2/2 024 CIRC ACCESSION NO--APOL16438 UNCLASSIFIED PROCESSING DATE--160CT70 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE IR SPECTRA OF Y SUB2 GE SUBN SI SUB1(2NEGATIVE N) O SUB7 (I), WHERE N EQUALS 2, 1.6, 1.4, 1.2, 1.18, 1.08, 0.6, 0.4, 0.3, 0.1, 0.06, AND O AND OF ALPHA PRIME-Y SUB2 SI SUB2 O SUBT (II) WERE RECORDED. SAMPLES OF THE SOLID SOLNS. WERE PREPD. FROM PURE OXIDES BY MEANS OF SOLID PHASE SYNTHESIS AT 1350DEGREES WITH COMBINATION OF ROASTING AND WET GRINDING. COMPARISON OF THE IR SPECTRA OF I WITH N EQUALS 0.4-1.18 AND II SHOWED SIMILARITY IN THE STRUCTURES OF THESE COMPOS. AND CONFIRMED CRYSTALLOOPTIC ANAL. DATA CONCERNING THE UNCLASSIFIED 

USSR

UDC 519.95

SHEVYAKOV, N. N., BRYUKHANOV, V. A., MOISEYEV, A. A., MOISEYEV, S. G.,

"Evaluation of the Coefficient of Technical Utilization of Complex Automatic Lines by the Method of Statistical Modeling"

Moscow, Avtomatizatsiya Operatsiy Proyektirovaniya Protsessov Mashinostroyeniya (Automation of Operations in the Design of the Processes of Machine Building), edited by V. I. Dikushin, "Nauka," 1970, pp 123-134

Abstract: One of the most important problems that arises in designing automatic lines with a complex structure is determination of the coefficient of technical utilization. Existing methods of analytical computation are based on a number of assumptions which make it possible to decrease the order of the system of differential equations involved but which introduce a divergence from the real coefficient of technical utilization. In the present automatic line is suggested. The algorithm, which is based on the method of statistical modeling on a computer (Monte-Carlo method), makes it possible a small number of general-purpose computational procedures.

SHEVYAKOV, N. N., et al., Avtomatizatsiya Operatsiy Proyektirovaniya Protsessov Mashinostroyeniya (Automation of Operations in the Design of the Processes of Machine Building), edited by V. I. Dikushin, "Nauka,"

As an example, the statistical modeling method is applied to a single-flow, interlinked automatic line with one adjuster and which consists of  $\underline{n}$  aggregates. After briefly describing the mathematical model which they adopted and the basic assumptions which it necessitated, the authors present and explain a flowchart of the modeling algorithm.

Next, on the basis of their mathematical model, they developed an algorithm for investigating the coefficient of technical utilization of an automatic line consisting of  $\underline{n}$  flows,  $\underline{q}$  segments, and  $\underline{a}$  adjusters. A two-page flowchart of the algorithm is presented. In order to verify the algorithm as a whole, the authors considered systems for which it is possible to find precise analytical solutions. The analytical solutions and the results obtained by modeling diverged at most by one to three percent.

2/2

- 157 -

**APPROVED FOR RELEASE: 07/20/2001** CIA-RDP86-00513R002202920014-9"

ANO 036647 Acc. Nr.: Ref. Code: URO5-67 AUTHOR \_\_ SCIENCE EDITOR OF THE "AVIYATSIYA I KOSMONAVTIKA. TITLE\_\_ TRACKING THE ROCKETS NEWSPAPER\_\_ KNIZHNOYE OBOZRENIYE, APRIL 10, 1970, NR 15, P 4 ABSTRACT— THE AUTHOR REVIEWS THREE BOOKS— /1/ "FIRST STAGES",
BY ALEKSEY IVANOV, /2/ "STEPS AMONG STARS", BY V. DENISOV AND
V. ONISHCHENKO, AND /3/ "FIERY SLING", BY V. AZERNIKOV, PUBLISHED BY
THE "MOLODAYA GVARDIYA", "ZNANIYE", AND "SOVETSKAYA ROSSIYA",
RESPECTIVELY. IVANOV REMINISCES ABOUT HIS ASSOCIATION WITH
YOR OF THE GEOMETRIC PROOF PROOF PROOF THE MAN. KOROLEV, S TEAM. THE SECOND BOOK DISCUSSES THE USES OF THE MAN-COMPUTER SYSTEM IN SPACE AND AVIATION. THE THIRD BOOK DEALS WITH THE DEVELOPMENT OF EFFICIENT ROCKET FUELS. Reel/Frame 12 9721513 

·USSR

UDC: 551.596:534.143

SHEV'YEV, Yu. P., MATSEVICH, E. V., PUGACHEV, A. D.

"Using the Method of Electroacoustic Analogies in Measuring the Acoustic Transparency of Material Specimens"

Tr. Taganrog. radiotekhn. in-ta (Works of Taganrog Radio Engineering Institute), 1973, vyp. 34, pp 180-184 (from RZh-Fizika, No 5, May 73, abstract No 5Zh631 by Ye. B. Kudashev)

Translation: A new method is proposed for measuring the coefficient of acoustic transparency of material specimens and structural elements in water on an installation of the "shock tube" type. The direct system of electroacoustic analogies is considered, enabling representation of the specimen as a two-terminal pair network. It is shown that the voltage ratio at the input and output of the network determines the acoustic transparency of a specimen characterized in the logarithmic scale by the difference in levels of the acoustic pressure measured in a hydroacoustic tube behind and in front of the specimen. A relation is derived for calculating the coefficient of acoustic transparency from the input impedances of the investigated specimen in the open-circuit and short-circuit modes. The

1/2

**APPROVED FOR RELEASE: 07/20/2001** CIA-RDP86-00513R002202920014-9"

SHEV'YEV, Yu. P. et al., Tr. Taganrog. radiotekhn. in-ta, 1973, vyp. 34, pp 180-184

paper gives the results of measurement of the variation, with frequency, of acoustic transparency of metal plates 1.4 and 0.4 cm thick. Some discrepancy between the experimental and theoretical results is attributed to the error in phase measurements. It is shown that the experimentally determined values of input impedances may also be used for calculating the modulus of normal elasticity and the density of experimental specimens of new sound-absorbing materials. The proposed method holds promise for studying the acoustic transparency of materials and structural elements at high hydrostatic pressures.

2/2

. 26 ..

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

UDC 578.087.8+577.472(26)

GITEL'ZON, I. I., LEVIN, L. A., SHEVYRNOGOV, A. P., FILIMONOV, V. S., ARTEMKIN, A. S., UTYUSHEV, R. N., and ZAGORODNIY, Yu. A.

"Measurement of Bioluminescence at Great Depths"

Moscow, Doklady Akademii Nauk SSSR, Vol 191, No 3, 1970, pp 689-692

Abstract: The recording of bioluminescence appears to be the only convenient way at present of studying abyssal organisms directly in their habitat. To carry out such investigations, the Institute of Physics of the Siberian Department of the Academy of Sciences USSR developed a bathyphotometric device with autonomous power supply and recording of signals. Magnetic recording is used for the signals coming from the light receiver. The bathyphotometer consists of two hermetically sealed containers joined together. The larger one holds the light receiver, power supply, program control system, and recording apparatus, while the smaller one holds a flashing lamp with program control and power supply. Measurements made in December 1968, by the research vessel Vityaz' in the Sea of Japan at a depth of 7000-7200 m are briefly described.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

1/3- 019 UNCLASSIFTED PROCESSING DATE--020CT70 TITLE--MEASUREMENT OF BIOLUMINESCENCE AT MAXIMUM DEPTHS -U-

AUTHOR-(05)-GITELZON, I.I., LEVIN, L.A., SHEVYRNOGOV, A.P., FILIMONOV, V-S., AKTEMKIN, A.S.
COUNTRY OF INFO--USSR

SOURCE--MOSCOW, DOKLADY AKADEMII NAUK SSSR, VOL 191, NO 3, 1970, PP 689-692
DATE PUBLISHED----70

SUBJECT AREAS--PHYSICS, EARTH SCIENCES AND OCEANOGRAPHY, BIOLOGICAL AND MEDICAL SCIENCES
TOPIC TAGS--BATHYPHOTOMETER, MARINE BIOLOGY, LUMINESCENCE, OCEANOGRAPHIC INSTRUMENT

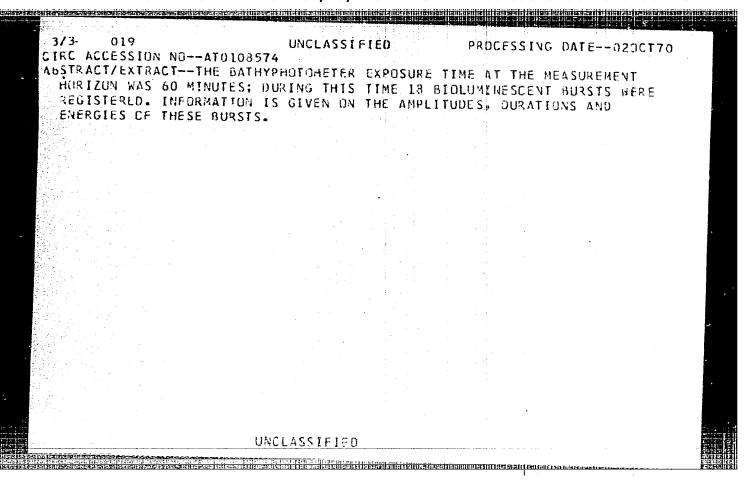
CONTROL MARKING -- NO RESTRICTIONS

PROXY RELL/FRAME--1990/0270

STEP NO--UR/0020/70/191/003/0689/0692

CIRC ACCESSION NO-ATO108574

- UNCLASSIFIED


APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

de la constancia del la constancia de la constancia de la constancia della constancia della

PROCESSING DATE--020CT70 **UNCLASSIFIED** SIRC ACCESSION NO--AT0108574 ASSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE REGISTRY OF BIOLUMINESCENCE IS EVIDENTLY THE ONLY AVAILABLE MEANS FOR STUDYING MANIFESTATIONS OF LIFE OF ABYSSAL ORGANISMS IN SITU. THE PHYSICS INSTITUTE SIBERIAN DEPARTMENT ACADEMY OF SCIENCES USSR HAS DEVELOPED AN ABYSSAL BATHYPHOTOMETER WITH A SELF CONTAINED POWER SOURCE WITH THE REGISTRY OF SIGNALS FROM A PHOTODETECTOR: IT IS CONNECTED TO THE SHIP BY A CABLE. MAGNETIC RECORDING IS USED FOR SIGNAL REGISTRY. FAT THE SITE OF THE INSTRUMENT IT WAS DEFMED NECESSARY TO INTRODUCE INTO THE MEDIUM SOME FORM OF EXCITATION BECAUSE MECHANICAL EXCITATION BY THE INSTRUMENT ITSELF IS SCARCELY ADEQUATE AT THE DEPTHS WHERE MEASUREMENTS WERE MADE. EXCITATION SOURCE WAS A FLASH LAMP. THE ARTICLE IS ACCOMPANIED BY A BLOCK DIAGRAM OF THE INSTRUMENT. THE DATHYPHOTOMETER OPERATES IN ACCORDANCE WITH A PRESTIPULATED PROGRAM. THE DURAFION OF AN INDIVIDUAL FLASH IS 1 MSEC. THE INSTRUMENT CONSISTS OF TWO COUPLED INSTRUMENT PACKAGES, ORIENTED AT AN ANGLE TO ONE ANOTHER IN SUCH A WAY THAT THE OPTICAL AXES OF BOTH PACKAGES INTERSECT AND ARE DIRECTED DOWNWARD. LARGER OF THE CONTAINERS HOLDS THE PHOTODETECTOR AND THE POWER SOURCE, THE SMALLER CONTAINER THE PROGRAMMED CONTROL SYSTEM AND THE RECORDER. HOLDS THE FLASH LAMP WITH PROGRAMMED CONTROL AND ITS POWER SOURCE. CONTAINERS ARE FABRICATED FROM A TITANIUM ALLOY AND ARE DESIGNED FOR OPERATING AT PRESSURES UP TO 1.500 KG-CM PRIMEZ, THAT IS, UP TO THE THE INSTRUMENT: WAS USED ABOARD THE "VITYAZI" IN GREATEST OCEAN DEPTHS. DECEMBER 1968 FOR HEASURING BIOLUMINESCENCE IN THE JAPANESE DEEP AT DEPTHS OF 7,000-7,200 M.

UNCLASSIFIED ---

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"



1/2 020 UNCLASSIFIED PROCESSING DATE -27NOV70
TITLE--MECHANISM OF THE OXIDATION OF ORGANOTIN COMPOUNDS BY OZONE -U-

AUTHOR-1031-ALEKSANDROV, YU.A., SHEYANOV, N.G., SHUSHINOV, V.A.

COUNTRY OF INFO--USSR

SQURCE--DOKL. AKAD. NAUK SSSR 1970, 192(1), 91-4

DATE PUBLISHED ---- 70

SUBJECT AREAS -- CHEMISTRY

TOPIC TAGS--DXIDATION, ORGANOTIN COMPOUND, DZONE, DECANE, COMPLEX COMPOUND, LEAD COMPOUND, CHEMICAL REACTION TEMPERATURE

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--3004/1864

STEP NO--UR/0020/70/192/001/0091/0094


CIRC ACCESSION NO--AT0132126

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

2/2 0.20 UNCLASSIFIED PROCESSING DATE--27NOV70 CIRC ACCESSION NO--AT0132126 ABSTRACT. KINETIC CURVES WERE SHOWN FOR THE ABSTRACT/EXTRACT--(U) GP-0-REACTION OF ET SUB 2 SN(OME)SUB 2 WITH D SUB 3 IN DECANE WITH VARYING AMTS. O PRESENT: THE REACTION WAS RUN AT 20DEGREES AND AT 60DEGREES. THE REACTION WAS BIMOL. INITIAL COORDINATION OF OUSUB 3 TO SN WAS PROVED BY ISOLATION OF A COMPLEX IN OZONOLYSIS OF ET SUB 3 SNCL IN HEXANE AT ODEGREES, WHICH GAVE ACH AND A CRYST. SOLID, CONTG. BOUND O SUB 3, DECOMPD. 117-19DEGREES, IDENTIFIED AS THE COMPLEX 2ET SUB3 SNCL.O SUB3. ETSNCLO. THIS DECOMPD., EVEN AT ROOM TEMP., SLOWLY TO FORM ACH AND ETSNCLO.ET SUB3 SNCL, M. 169-71DEGREES. EVIDENTLY ORGANOTIN COMPOS. REACT WITH O SUB 3 EITHER WITH OR WITHOUT LOSS OF O AND BY IN OZONOLYSIS OF ET SUB 3 SNCL THE HYDROPEROXIDIC COMPLEX FORMATION. PRODUCT ET SUB3 SNOSNET SUB 2 OOH IS DIRECTLY CONVERTED INTO EXCH AND ETSNCLO, BUT IN OZONOLYSIS OF ET SUB 3 PBCL IT WAS POSSIBLE TO ISOLATE ETPBCLO, A YELLOW SOLID, WHICH WAS INSOL. AND INFUSIBLE. OZONOLYSIS OF ET SUB 2 SNCL SUB 2 IN CCL SUB 4 AT 15DEGREES GAVE COLORLESS COMPLEX ET SUB 2 SNCL SUB 2.ETSNCL SUB 2 OOH, M. 61-20EGREES. THIS HYDROLYZED TO ET SUB 2 SNCL SUB 2 AND H SUB 2 O SUB2. THE OZONOGYSIS OF ORGANOTIN COMPOS. IS CHARACTERIZED BY A LACK OF TEMPERATURE COEFF. OF THE REACTION RATE. FACILITY: NAUCH. ISSLED. INST. KHIM., USSR.

<del>UNCLASSIFIED</del>

1/2 TITLE--EFFECT OF COORDINATION ON THE OZONOLYSIS OF METAL CARBON BONDS -U-PROCESSING DATE--230CT70 AUTHOR-(02)-ALEKSANDROV, YU.A., SHEYANDY, N.G. COUNTRY OF INFO--USSR SOURCE--ZH. OBSHCH. KHIM. 1970, 40(1), 246-7 DATE PUBLISHED ---- 70 SUBJECT AREAS--CHEMISTRY TOPIC TAGS--OZONE, CARBON, METAL BONDING, CHEMICAL BONDING CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1998/0418 STEP NO--UR/0079/70/040/001/0246/0247 CIRC ACCESSION NO--APO121092 UNCLASSIFIED 



USSR

UDC 547.94

YAKHONTOVA, L.D., SHEYCHENKO V.I. and TOLKACHEV, O.N., All Union Scientific Research Institute of Medicinal Plants

"Study of the Glaucium Flavum Alkaloids. The Structure of Glauvine"

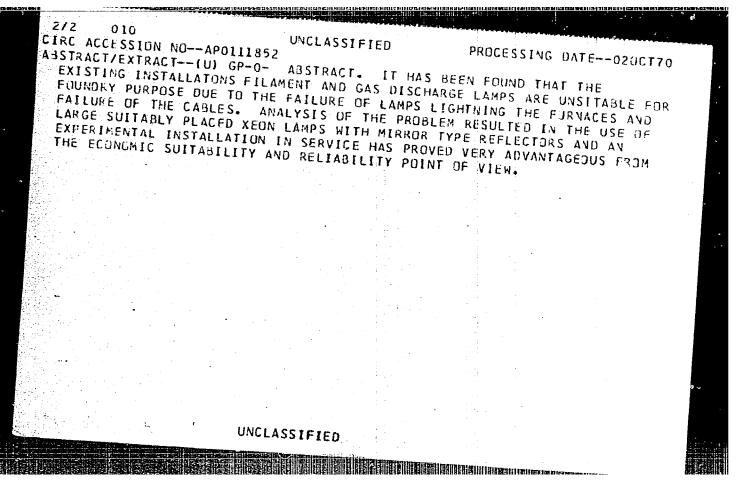
Tashkent, Khimiya Prirodnykh Soyedineniy, No 2, 1972, pp 214-218

Abstract: The alkaloids extracted from Glaucium flavum with chloroethane were subjected to chromatographic separation on an aluminum oxide packed column. The separation of alkaloids was accomplished by elution with benzene and benzene-methanol mixtures containing successively higher fractions of methanol (eluent of gradually increasing polarity). In addition to the earlier found components (glaucine, isocoridine, protopine and isoboldine) three new bases were eluted: (1) a yellow substance of C20H17NO5 composition, identified as O-methylateroline; (2) a colorless substance of C10H21NO, composition identified as sinocutine; and (3) a green substance of C20H17NO5 composition, previously unreported in literature, was named glauvine. It was found that glauvine can be obtained by heating o-methylateroline at 150° C for 18-20 hours. Acid solutions of glauvine are orange in color, while

1/2

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

YAKHONTOVA, L.D., et al, Khimiya Prirodnykh Soyedineniy, No 2, 1972, pp 214-


alkaline solutions are green. UV spectra of glauvine and O-methylateroline are very similar indicating the similarities in their chromophoric groups. On the basis of IR and NMR spectroscopic studies the following structure is proposed for glauvine.

2/2

3.

1/2 010 TITLE--USE OF HIGH POWER DISCHARGE LIGHT SOURCES FOR LIGHTING BLAST PROCESSING DATE--020CT70 AUTHOR-SHEYDIN, S.A. COUNTRY OF INFO-USSR SOUPCE--SVETOTEKHNIKA (USSR), NO. 1. P 15 JAN. 1970 DATE PULLISHED ----- 70 SUBJECT AREAS-MECH., IND., CIVIL AND MARINE ENGR TOPIC TAGS-BLAST FURNACE, XENON LAMP CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1992/0659 STEP NO--UR/0311/70/000/001/0015/0015 CIRC ACCESSION NO--APOILL852 UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"



UDC 541.183.5:546.79

SHEYDINA, L. D., ROZOVSKAYA, N. G., and KOVARSKAYA, Ye. N.

ř.

"A Method of Studying Radioelement Sorption"

Leningrad, Radiokhimiya, Vol XIII, No 2, 1971, pp 180-184

Abstract: A study was made of the methods of investigating the sorption of radioelements. The sorption of  $p_u(IV)$  on glass as a function of the pH of a solution (freshly prepared) with a plutonium concentration of  $4\cdot 10^{-8} \text{M}$ , the aged solutions with a plutonium concentration of the pH of a solution made of  $p_u(IV)$  on glass as a function of the pH of a solution made of  $p_u(IV)$  on glass as a function of the pH of a solution made of freshly prepared solutions with a plutonium concentration of  $4\cdot 10^{-8} \text{M}$  are plotted. The method of sorption from aged solutions is described, and it is found to be their state in solution.

The results obtained by various authors are discussed, and an experiment is described in which the causes of contradictory data of various authors

SHEYDINA, L. D., et al., Radiokhimiya, Vol XIII, No 2, 1971, pp 180-184

obtained in the study of the sorption of  $p_{\mathbf{u}}(\mathbf{IV})$  under various experimental conditions are established. The sorption mechanism is discussed in detail and reasons are given for the various shapes of the curves. Both experimental errors and impurities are given as causes for these differences.

2/2

- 79 -

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

USSR

UDC 54-168:546.799.4

SHEYDINA, L. D. and KOVARSKAYA, Ye. N.

"Colloidal State of Pu(IV) in Aqueous Solutions"

Moscow, Radiokhimiya, Vol 12, No 2, 1970, pp 253-259

Abstract: A study was made of the state of pu(IV) in a wide range of concentrations:  $10^{-10}$  to  $10^{-5}$  H. To extend the range of plutonium concentrations, the isotopes  $^{239}P$  (T = 2.4.  $10^{4}$  years) and  $^{235}Pu$  (T = 92 years) were used. The valence state of plutonium was verified spectrophotometrically or (for small amounts) by coprecipitation with zirconium phenylarsonate. pu(IV) in the starting solution was dissolved in 1.5 M nitric acid. Working solutions of pu(IV) were prepared by adding redistilled ammonia or nitric acid; water was doubly distilled. The state of pu(IV) was investigated by three methods: adsorption, centrifuging, and electrophoresis. Curves describing the sorption of pu(IV) -- in the  $10^{-10}$  to  $10^{-3}$  d concentration range -- on quartz glass (from solutions in which equilibrium was established between the different forms of plutonium) as a function of solution pH are characterized by a steep rise and a maximum in the region pH  $\simeq$  3. Apparently this change is due to appearance of hydrolyzed cations of pu(IV) in which the number of hydroxyl groups per plutonium rises with rising solution pH; from 1 to 3.

1/2

USSR

SHEYDINA, L. D., et al, Radiokhimiya, Vol 12, No 2, 1970, pp 253-259

It is also concluded that polymerization of plutonium is the reason for the shift in the maximum on the sorption curve characterizing the onset of hydroxide formation, toward the high ph values in the transition from trace concentrations of the element to concentrations on the order of 10-0 M.

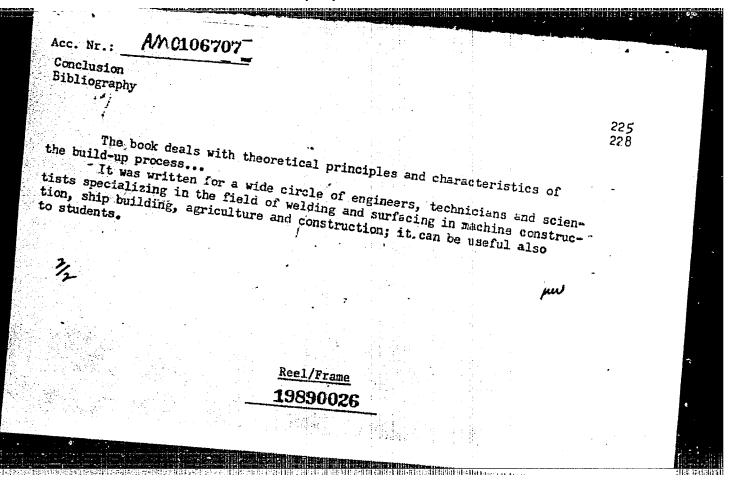
2/2

USSR

UDC 51:621.391

artieriterezzitikioardaritikenina iruktulitikarezakoliki iruktuaritetakoarakoliki iruktuari

KOLESNIKOV, M. A., SHEYENBERGAS I. M.


"The Schaeffer Function in Four-Valued Logic"

Raboty po Tekhn. Kibernet. Vyp. 3 [Works on Engineering Cybernetics, No 3 -- Collection of Works], Moscow, Acad. Sci. USSR Computer Center, 1971, pp 50-100, (Translated from Referativnyy Zhurnal, Kibernetika, No 6, 1971, Abstract No 6 V443 by G. Blokhina).

Translation: The 4-valued logic P<sub>4</sub> is analyzed. Function f from P<sub>4</sub> is called a Schaeffer function if its closure relative to the operations of superposition corresponds with P<sub>4</sub>, i.e. f forms a system complete in P<sub>4</sub>. Clearly, function f is a Schaeffer function when and only when it is not contained in any of the so-called subcomplete classes, i.e. the closed sets of functions which differ from P<sub>4</sub>, but the union of which with any function not belonging to it is a complete system in P<sub>4</sub>. It is also clear that the system of subcomplete classes may be, generally, redundant for explanation of the Schaeffer quality of a function. This work establishes that this is actually the case. Of the entire set of subcomplete classes in P<sub>4</sub>, the number of which as we know (RZhMat, 1969, 10A35) is equal to 82, system a function in each of these is a criterion which insub-system of system a function; it is also demonstrated that any natural 1/1

AM 0106707 Acc. Nr.: Ref. Code: <u>UR 0000</u> I. N.; Oreshkin, V. D.; Repkin, Yu. D. Contemporary Build-Up Materials Based on Refractory Compounds (Sovermennyye naplavochnyye materialy na osnove tugoplavkikh soyedineniy) Kiev, Naukova Dumka, 1970, 235 pp (SL:2078) TABLE OF CONTENTS: Introduction 3 Theoretical Principles and Characteristics of the Build-Up Chapter I 7 Build-Up Methods and Their Essence II 31<sub>4</sub> 59 99 Electrodes for Build-Up Operations III Classification of Build-Up Materials IV Methods for Production of Highly Wear-Resistant Build-Up Materials 139 New Carboboride and Silicide Build-Up Materials VI 133 Hardening of Parts of Metallurgical Equipment by Means of VII Alloys Based on Refractory Compounds 206 Reel/Frame 19890025 18

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"



UDC 621.771.28.001.5

POLUKHIN, P. I., POTAPOV, I. N., FINAGIN, P. M., and SHEYKH-ALI, A. D.

"Theoretical Developmental Work on the Rolling Process in the Area of Large Feeding Angles"

Plasticheskaya Deformatsiya Metallov i Splavov, Moscow, No 64, "Metallurgiya,"

Translation: A theoretical study of the process of cross-screw rolling at large feeding angles is made. It is noted that, in this case, the process has specific features which require a new approach to calibrating the tool and adjusting the mill. Two figures.

1/1

CIA-RDP86-00513R002202920014-9" APPROVED FOR RELEASE: 07/20/2001

UDC 621.771.28.001.5

POLUKHIN, P. I., POTAPOV, I. N., FINAGIN, P. M., and SHEYKH-ALI, A. D.

"An Investigation of the Piercing Process on the 30-102-Type Rolling

Plasticheskaya Deformatsiya Metallov i Splavov, Moscow, No 64, "Metallurgiya,"

Translation: The article gives results of experimental investigations made on the TPAZO-102 tube-piercing mill of the power parameters of the piercing process in the area of large feeding angles. Measurements are made of the full pressure of the metal on the rolls, the force on the mandrel, the torsional moments, and the piercing power. The data obtained may be used in designing and calculating modern-type rolling aggregates. Six figures.

1/1

- 19 -

UDC 621.771.28.001.5

POLUKHIN, P. I., POTAPOV, I. N., FINAGIN, P. M., and SHEYKH-ALI, A. D.

"An Investigation of Speed Conditions of the Piercing Process in the Area of Increased Feeding Angles and the Quality of Pipes"

Plasticheskaya Deformatsiya Metallov i Splavov, Moscow, No 64, "Metallurgiya," 1970, pp 136-142

Translation: The article gives results of experimental investigations conducted on the TPAZO-102 tube-piercing mill of speed conditions of the piercing process with large feeding angles. A significant decrease in machine piercing time with an increase in the feeding angle is established. New conditions for the piercing process are developed which made it possible to improve the quality of sleeves and pipes in terms of surface condition and geometric conditions. Six figures and one table.

1/1

unc:

SHEYKHET E. C. and YEF MIOV, O. N., Institute of Semiconductors of the USSR Academy of Sciences, Leningrad USSR

"Photoelectric Absorption and Diffusion Scattering During the Anomalous Transmission of X-rays in Ge Single Crystals"

Leningrad, Fizika Tverdovo Tela, Vol 14, No 3, Mar 1972, pp 734-736

Abstract: The authors analyze the absorption and scattering processes of x-rays during their interaction with cluster-type defects (clustering of impurity atoms) and loop-type dislocations. The average distance of the static displacement of atoms is determined during the formation of dislocation-type loops in the Ge-As system. It is shown that photoelectric absorption and diffusion scattering during anomalous transmission of x-rays depend on defect size and magnitude of the deformations, which distort the crystal lattice during the decay of germanium-based, supersaturated solid solutions. Original article: two formulas, one figure, two tables, and no bibliographic entries.

1/1

CIA-RDP86-00513R002202920014-9" **APPROVED FOR RELEASE: 07/20/2001** 

UNCLASSIFIED PROCESSING DATE--230CT70

1/2 031

TITLE--EFFECT OF IMPURITY PRECIPITATIONS ON THE ANOMALOUS X RAY

TRANSMISSION IN HEAVILY ARSENIC DOPED GERMANIUM -UAUTHOR-(03) PEFIMOV, 0.N., SHEIKHET, E.G., DATSENKO, L.I.

COUNTRY OF INFO--USSR

SOURCE--PHYSICA STATUS SOLIDI, 1970, VOL 38, NR 1, PP 489-498

DATE PUBLISHED-----70

SUBJECT AREAS--PHYSICS

TOPIC TAGS--GERMANIUM SEMICONDUCTOR, CRYSTAL DISLOCATION, X RADIATION, WAVE PROPAGATION, SEMICONDUCTOR IMPURITY, ARSENIC, SOLID SOLUTION

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1989/1067

STEP NO--GE/0030/70/038/001/0489/0498

CIRC ACCESSION NO--APO107576

UNCLASSIFIED

UNCLASSIFIED PROCESSING DATE--230CT70 CIRC ACCESSION NO--APO107576 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. EXPERIMENTAL DATA OF QUANTITATIVE STUDIES OF THE INTEGRAL CHARACTERISTICS OF ANOMALOUS X RAY TRANSMISSION ARE GIVEN FOR GERMANIUM WITH DIFFERENT DISLOCATION DENSITIES, DOPED WITH ARSENIC UP TO A CONCENTRATION OF APPROXIMATELY EQUAL TO 4 TIMES 10 PRIME19 AT-CM PRIME NEGATIVES AT VARIOUS TAGES OF EXISTENCE AND DECOMPOSITION OF THE SOLID SOLUTION. THE STATE OF SOLID SOLUTION WAS CONTROLLED BY ELECTROPHYSICAL MEASUREMENTS AND X RAY TOPOGRAPHS (BORRMANN'S METHOD). ON THE BASIS OF THE RESULTS OBTAINED SOME CONCLUSIONS ARE DRAWN ABOUT THE CHARACTER OF THE DISTURBANCES GENERATED BY THE ABOVE MENTIONED DECOMPOSITION OF THE SOLID SOLUTION. PARTICULARITIES OF THE SOLUTION BEHAVIOUR ARE CONSIDERED WHEN THE CONCENTRATION OF ARSENIC IS NEAR THE LIMIT. FACILITY: INSTITUTE OF SEMICONDUCTORS, ACADEMY OF SCIENCES OF THE USSR, LENINGRAD. FACILITY: INSTITUTE OF SEMICONDUCTORS, ACADEMY OF SCIENCES OF THE UKRAINIAN SSR, KIEV.

UNCLASSIFIED

USSR

UDC: 51

MAKAROV, V. L., TITOV, V. V., and SHEYKHETOV, B. M.

"A Model for Designing the Production Program for an Industrial Enterprise"

Sb. tr. In-t mat. Sib. otd. AN SSSR (Collection of Works, Institute of Mathematics, Siberian Division, Academy of Sciences, USSR) No 7(24), 1972, pp 61-70 (from RZh--Matematika, No 7, 1973, Abstract No 7V569)

Translation: In this model for designing the production program of an industrial enterprise, one of the steps in the operation model for the enterprise, the existing practice of computing the production problem is formalized. Authors' abstract.

1/1

- 34 -

UDC 616.981.55-092.9-085.214.22-059:615.221]-07:616.832-008-07 USSR

KRYZHANOVSKIY, G. N., SHEYKHON, F. D., and IGON'KINA, S. I., Institute of Normal and Pathological Physiology, USSR Academy of Medical Sciences

"Effect of Some Phenothiazine Compounds and a-Adrenergic Blocking Agents on Spinal Cord Activity After Disruption of the Inhibitory Mechanisms by Tetanus Toxin"

Moscow, Farmakologiya i Toksikologiya, No 3, 1973, pp 276-280

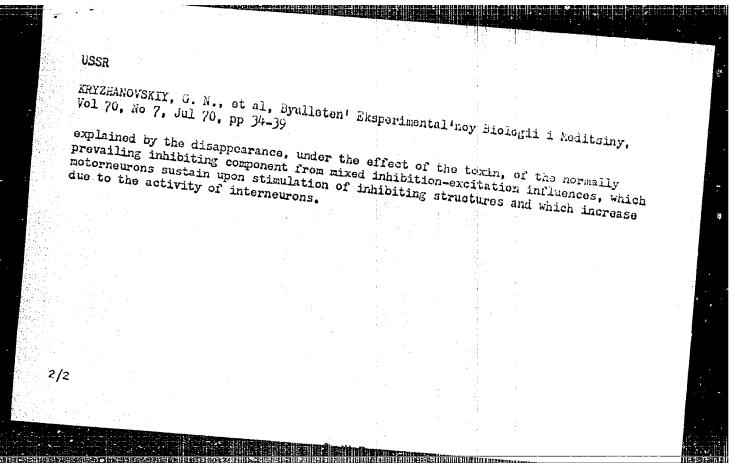
Abstract: Intravenous injection of chlorpromazine (0.75 mg/kg) resulted in deep depression of background and trace electrical activity of the extensor and flexor muscles in rats with local tetanus and intact spinal cord but only mild inhibition of evoked activity. However, in animals with transected spinal cord, chlorpromazine in the same dose produced the opposite effect -intensification of background and especially trace activity. Chlorpromazine also intensified the electrical activity of the muscles in animals without tetanus but with transected spinal cord. The a-adrenergic blocking agents phentolamine and to a lesser extent dihydroergotoxin also inhibited electrical activity in rats with intact spinal cord and intensified it in the injured animals. Trifluoperazine had virtually no effect on animals with tetanus whether their spinal cord was intact or not. 1/1

CIA-RDP86-00513R002202920014-9"

APPROVED FOR RELEASE: 07/20/2001

UDC 616.981.551-092:612.633.8

USSR


KRYZHANOVSKIY, G. N., and SHEYKHON, F. D., Laboratory of the Pathophysiology of Infectious Intoxications institute of Normal and Pathological Physiology, Academy of Medical Sciences USSR, Moscow

"Descending Facilitating and Inhibiting Effects From the Medulla Oblongata on the Monosynaptic Reflexes in Tetanus Intoxication"

Moscow, Byulleten' Eksperimental'noy Biologii i Meditsiny, Vol 70, No 7, Jul 70, pp 34-39

Abstract: The effect of stimulation of the facilitating and inhibiting structures of the medulla oblongata on the monosynaptic reflexes in local tetanus was studied in experiments on cats under mild nembutalchloralose amesthesia. With the development of tetanus intoxication, facilitation of monosynaptic reflexes increased and polysynaptic activity appeared upon stimulation of the facilitating structures. Stimulation of the Inhibiting structures, instead of the normally characteristic depression, causes facilitation of monosynaptic reflexes and appearance of polysynaptic activity on the side of injection. This effect is noted immediately or during the first dozen milliseconds after stimulation, i.e., at a time when inhibition is most pronounced under normal conditions. On the side contralateral to toxin injection, inhibition is preserved upon stimulation of the same structures. In local tetanus, the appearance of excitation reactions instead of inhibition is 1/2

**APPROVED FOR RELEASE: 07/20/2001** CIA-RDP86-00513R002202920014-9"



PROCESSING DATE--C3JUT70 UNCLASSIFIED TITLE-THE IMPERTANCE OF GLUCCOURTICOIC METABOLISM IN THE TREATMENT OF ALTHOR--RUDNEY, G.P. SHEYKNAN, M.B., LATSINIK, G.YE. VIRAL HERATITIS -L-CELATEY OF INFE--USSR SCURCE-KLINICHESKAYA MECITSINA, 1970, VCL 48, NR 1, PP 72-79 DATE PUBLISHED -----70 SUBJECT AREAS--BICLEGICAL AND MEDICAL SCIENCES TOPIC TAGS--FEFATITIS, VIRAL DISEASE COFTICUIC, METABOLISM, DIAGNOSTIC MEDICINE CENTEEL MARKING--NE RESTRICTIONS STEP AC--UR/C497/70/045/001/0072/0079 COCCHENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1978/0570 CIRC ACCESSION NE-- 1POC45553 UNGLASSIFIES

Acc. Nr: AP0045593

Ref. Code: UR6497

PRIMARY SOURCE: KI

Klinicheskaya Meditsina, 1970, Vol 48,

Nr / . pp 72-79

THE IMPORTANCE OF GLUCOCORTICOID METABOLISM IN THE TREATMENT OF VIRAL HEPATITIS

Rudnev, G. P.; Sheykman, M. B.; Latsinik, G. Ye.

Under study was the state of processes of glucocorticoid conversion in 98 patients suffering from viral hepatitis of diverse severity. There was found a reduced exerction of reduced tetrahydrometabolites, testifying to a disturbance of enzymatic processes of cortisol inactivation, impairment of processes of binding of corticosteroids with glucuronic and suffuric scids, decrease of the binding capacity of blood plasma transcottin, diminished excretion of 11-oxy-17-ketosteroids and increased excretion of 6-beta-oxycortisol. There was established a relationship between metabolic dicturbances of cortisol and the severity of the disease. The authors analyze the pathogenetic importance of disclosed metabolic disturbances of gluco-corticoids, as well as the possibility of using indices of cortisol inetabolism for assessing the severity of the disease, for prognosis and for control over the effectiveness of treatment.

1/1

19780570

with 6

TITLE-A GENERAL PURPOSE MULTIBALL BURNISHER -U-

AUTHUR-(03)-ANDRIYASIN, V.A., CHEPA, P.A., SHEYKO, I.I.

COUNTRY OF INFO-USSR

SOURCE-MOSCOW, STANKE I INSTRUMENT, NO 2, 1970, PP 30-31

DATE PUBLISHED----70

SUBJECT AREAS-MECH., IND., CIVIL AND MARINE ENGR

TOPIC TAGS--HYDRAULIC EQUIPMENT, SURFACE PROPERTY, METAL POLISHING, PLASTIC DEFORMATION, METAL WORKING MACHINE

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS—UNCLASSIFIED PROXY REEL/FRAME—1993/1776

STEP NO--UR/0121/70/000/002/0030/0031

PROCESSING DATE--- 090CT70

CIRC ACCESSION NO--APOLIA275

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

2/2 025 UNCLASSIFIED PROCESSING DATE--090CT70
CIRC ACCESSION NO--APOLY-275
ABSTRACT/EXTAACT--(U) GP-0- ABSTRACT. FOR FINISHING WORKS ON PARTS OF
LOW RIGIDITY (SUCH AS COUPLING RODS FOR HYDRAGUIC CYLINDERS) BY THE
METHOD OF SURFACE PLASTIC DEFORMATION, THE SCIENTIFIC RESEARCH INSTITUTE
METHOD OF SURFACE PLASTIC DEFORMATION, THE SCIENTIFIC RESEARCH INSTITUTE
OF MACHINERY MANUFACTORE AND METAL WORKING (MINSK) HAS DEVELOPED A
GENERAL PURPOSE MULTIBALL BURNISHER, A DISTINCTIVE FEATURE OF WHICH IS
THE POSSIBLITY OF READJUSTMENT FOR PROCESSING PARTS WITH A DIAMETER FROM
10--32 MM VIA THE PLACING OF BALLS OF APPROPRIATE DIMENSIONS. A
DISCRIPTION OF THE MACHINE IS GIVEN, AND ITS OPERATION IS DESCRIBED.
SUCH BURNISHERS ARE RECOMMENDED FOR FINISHING WORK ON PARTS OF VARIOUS
SIZES WITH A REQUIRED SURFACE CLEANNESS OF CLASS 9-10.

USSR

UDC 536.4:669.715:669.018

TORSON ACTIONS SERVING OF DESIGNATION SERVING OF DEPOSITION OF THE REPORT OF THE SERVING OF THE

VARICH, N. I., and SHEYED, T. I.

"Thermal Expansion of Al-Mo and Al-Zr Alloys, Produced With High Cooling Rates"

Sverdlovsk, Fizika Metallov i Metallovedeniye, Vol 30, No 2, Aug 70, pp 443-445

Abstract: With cooling rates on the order of  $10^4-10^6$  /sec from the liquid state, a significant expansion of the area of the solid solution is noted in alleys of aluminum with transition metals. This process is accompanied by the appearance of metastable phases and changes in a number of physical properties of the solid solution. One of the most important peculiarities of the metastable solid solutions is their high temperature stability. This work presents a study of the changes in the coefficient of linear expansion of Al-Mo and Al-Zr alloys in the 23-450° interval. Foil specimens 0.09-0.1 mm thick were produced by cooling a drop of the melt on a rotating copper drum.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

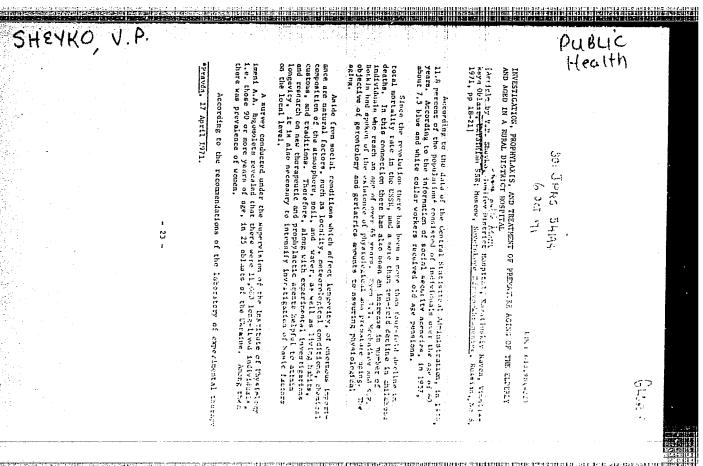
A MONTE CONTROLLE AND THE CONTROLLE STATE OF THE STATE OF

USSR

UDC 621.791.001.5:669.14:62-408.3:669.295

SHCHERBAK, M. A. (Engineer), ARISTOV, V. S. (Cand. of Techn. Sciences), SHEYKO, V. I. (Engineer) and PROKHOROV, P. A. (Cand. of Techn. Sciences)

"Problems of Welding Titanium-Clad Steel"


Moscow, Svarochnoye proizvodstvo, No 2, Feb 72, pp 19-20

Abstract: Automatic welding is finding expanding application in the fabriration of structures from clad steel. Of some interest therefore is the use
of automatic welding of structures from titanium-clad steel. The experimental
material in this study was St.3 steel clad with 3-4 mm VT1 titanium, the combined thickness being 10-20 mm. The experimental welding was performed
under linear energies of 2300-8500 cal/cm. It is shown that the boundary
layer of titanium-clad steel may be heated up to 700°C without affecting the
mechanical properties. Heating the steel above that temperature causes a
reduction of resistance to direct pull and shear. Discussed also is the need
of lap-welded strap-reinforced facings to eliminate faulty fusions in the
cladding layer. Tensile tests on both manual and automatic welded specimens
showed 40.0-47.5 kg/mm<sup>2</sup>. Static bend tests at a 160-degree angle performed
on specimens of butt joints with longitudinal welds both manual and automatic
failed to separate the cladding layer in the weld area. (2 illustr., 1 table,
5 biblio. references)

1/1

- 70 -

6°3



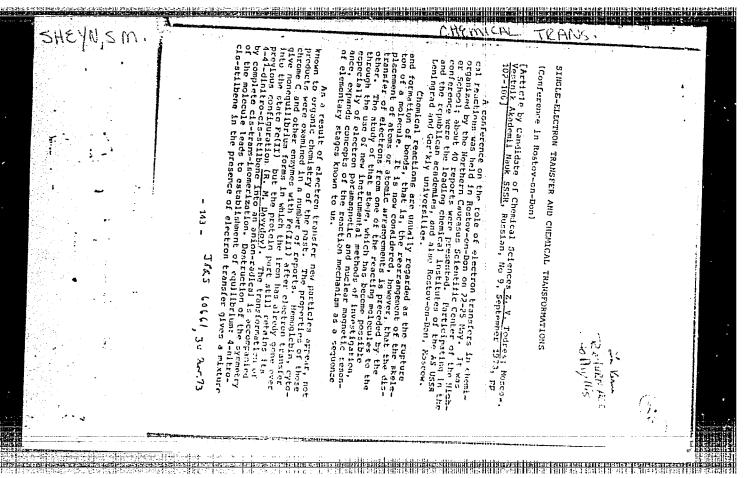
USSR

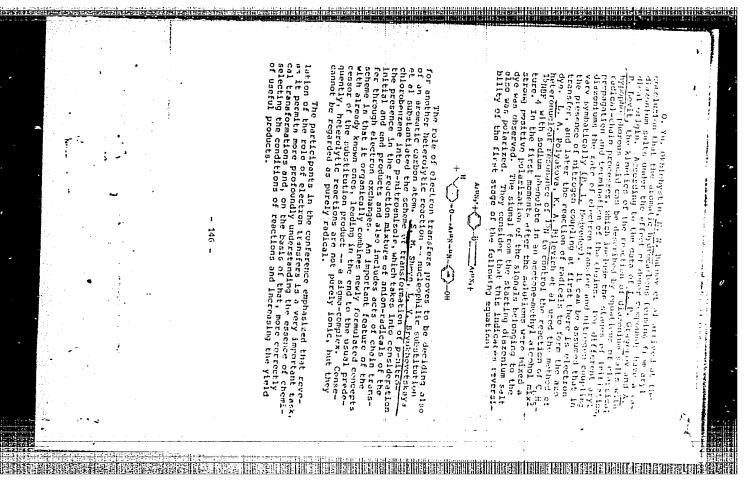
UDC 621.317.757(088.8)

SHEYMAN, V. L.

"Two-Cascade Recirculator"

USSR Author's Certificate No 252467, Filed 5 Jun 68, Published 6 Feb 70 (from RZh-Radiotekhnika, No 9, Sep 70, Abstract No 9Al44P)


Translation: The proposed two-cascade recirculator contains two lines with multiple delay time relations, closed feedback circuits via frequency shift devices, a shift frequency generator of the first recirculator and summators. The recirculator is distinguished by the fact that in order to improve the resolution with respect to frequency a frequency multiplier is used in it between the shift frequency generator of the first recirculator and the shift frequency device of the second. The multiplier increases the shift frequency of the second recirculator as many times as the delay time of the second cascade is greater than the delay time of the first cascade.


1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

1 - 17 ASSERBACKE SALALA SE DAN SALAT UN BESTER DE BESTANDE MANAGEMENT AUGUSTE AUGUSTE. DE COMBETANT DE SALAT ESTANDAR DE SALAT DE BESTANDE DE BESTA

Abstracting Service: 5/10 INTERNAT. AEROSPACE ABST. 480141 Experimental investigation of the characteristics of two-dimensionally periodic slow-wave structures (Eksperimental'noe. issledovanie kharakteristik dyumernoperiodicheskikh zamedliaiushchikh sistem). A. G. Sigin, V. I Moliavko and G. la. Krasovskii (Kharikovskii Institut Radioelektroniki, Kharkov, Ukrainian SSR). Radiofizika, vol. 13 no. 12 V V U.Z. 1, 1970, p. 152-154, In Russian. Experimental verification of Shein's (1968) theoretical study of the characteristics of a two-dimensionally pariodic slow-wave structure. It is found that Shein's formulas derived in zero approximation, accounting only for the first harmonic are, in general, in satisfactory agreement with the experimental data. A certain increase in the error at the band boundaries is attributed to an augmented influence of the higher spatial harmonics on the structure of the hf field. 21





UNCLASSIFIED PROCESSING DATE-+13NOV70
TITLE--PHR SPECTRA OF PRODUCTS OF THE REACTIONS OF 1,3,5, TRINITROBENZENE
AND 2,4,6,TRINITROANISULE WITH SODIUM METHYLATE +UAUTHOR-(03)-SHEYN, S.M., BROVKO, V.V., KHMELINSKAYA, A.D.

COUNTRY OF IMFO--USSR

SOURCE--ZH. ORG. KHIM. 1970, 6(4), 781-4

DATE PUBLISHED ---- 70

SUBJECT AREAS -- CHEMISTRY

TOPIC TAGS--MAGNETIC RESONANCE, SPECTRUM, NITROBENZENE, METHOXY COMPOUND, ORGANIC COMPLEX COMPOUND, ORGANISODIUM COMPOUND, ANISOLE

H4614531F160----

CONTROL MARKING -- NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY RESL/FRAME--2000/1945

STEP NO--UR/0366/70/006/004/0781/0784

CIRC ACCESSION NO--AP0125534

2/2 G16 UNCLASSIFIED PROCESSING DATE--19NOV7O
CIRC ACCESSION NU--APO125534
ABSTRACT/EXTRACT--(U) GP-0- AUSTRACT. THE TITLE REACTION GIVES
MONOMETHOXY, DIMETHOXY, AND TRIMETHOXY SIGMA COMPLEXES (MEISENHEIMER
COMPDS.) OF 1,3,5,TKINITROBENIZENE OR 2,4,6,TRINITROBENIZENE. PMA
SPECTRA SHOWN THAT THE TRIMETHOXY COMPLEXES HAVE 2 NEG. ELEC. CHARGES.
THE FORMATION OF LESS STABLE TRIMITROMUNDRETHOXYPHENYL ANION RADICALS
WAS ALSO DETECTED. THE FORMATION OF THE MONOETHOXY AND DIMETHOXY SIGMA
COMPLEXES OCCURS SIMULTANEOUSLY. FACILITY: NOVOSIBIRSK. INST.
ORG. KHIM., NOVOSIBIRSK, USSR.

1/2 014

UNCLASSIFIED

PROCESSING DATE--- 20NOV70

TITLE--ROLE OF SINGLE ELECTRON TRANSFER STEPS IN REACTIONS OF ORGANIC

COMPCUNDS -U-

AUTHUR-(04)-BLYUMENFELD, L.A., ERYUKHCVETSKAYA, L.V., FUMIN, G.V., SHEYN,

COUNTRY OF INFO-USSR

SOURCE--Zh. FIZ. KHIM. 1970, 44(4), 931-44

DATE PUBLISHED ----- 70

SUBJECT AREAS -- CHEMISTRY

TOPIC TAGS--ELECTRON, URGANIC CHEMISTRY, CHEMICAL REACTION MECHANISM

CENTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--3002/1160

STEP NO--UR/0076/70/044/004/0931/0944

CIRC ACCESSION NO--APOL28582

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

| Z/Z 014<br>IRC ACCESSION NO- | UNCLASSIFIED -AP0128582 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROCESSING DATE-20NOV70 |               |
|------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|
| BSTRACT/EXTRACT              | -(U) GP-O- A            | BSTRACT. THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SINGLE ELECTRON         | I TRANSFER IN |
| HETERCLYTIC CHEN             | A. REACTIONS            | IS REVIEWED WI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TH 60 REFS.             | FACILITY:     |
| INST. KHIM. FIZ.             | * MUANZIBIKZ            | K+ USSR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |               |
|                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
|                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
|                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
|                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
|                              |                         | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |               |
|                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
|                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
|                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
|                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
|                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                       |               |
|                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
|                              |                         | ** ** ** ** ** ** ** ** ** ** ** ** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |               |
|                              | 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
|                              | •                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
|                              |                         | The second secon | And the second          |               |
|                              |                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |               |
|                              |                         | , :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |               |
|                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                       |               |
|                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |
|                              |                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |               |

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

USSR

SHEYNAUSKAS, R. I.

"Algorithm for Establishment of Isomorphism and Isomorphic Embedding of two Graphs"

Vychisl. Tekhnika, T. 3 [Computer Technology, Vol 3 -- Collection of Works], Kaunas, 1972, pp347-353 (Translated from Referativnyy Zhurnal Kibernetika, No 4, 1973, Abstract No 4V408, by V. Zemlyachenko).

Translation: An algorithm is suggested for establishment of isomorphism and isomorphic embedding of weighted graphs. The author notes that the difficulty of the algorithm depends strongly on the structure of the graphs. Certain experimental data are presented on the effectiveness of the machine realization of this algorithm.

.44 ..

USSR

UDC: 681.3

ABRAYTIS, L. B., SHEYHAUSKAS, R. I.

"Typical Characteristics of Functional Diagrams in Problems of Arrangement"

V sb. Avtomatika i vychisl. tekhn. (Automation and Computer Technology-collection of works), No 3, Vil'nyus, "Mintis", , 1971, pp 199-210 (from RZh-Kibernetika, No 12, Dec 71, Abstract No 12V887)

Translation: An algorithm is presented for representing connective trees of individual connected sets in such a way as to minimize the connectedness of the diagram. Execution of the algorithm involves following the goal of increasing the number of parallel connections between two functional elements and reducing the number of elements connected directly to the element being studied. It is proved that the algorithm guarantees reaching the optimum solution. Authors' abstract.

1/1

- 49 -

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

USSR

UDC 51:621.391

KOLESNIKOV, M. A. and SHEYNBERGAS, I. M.

"Scheffer Functions in a 4-Valued Logic"

Moscow, Raboty po tekhn. kibernet.—Sbornik (Works on Technical Cybernetics -- Collection of Works), Computer Center of the Academy of Sciences, USSR, No 3, 1971, pp 50-100 (from Referativnyy Zhurnal -- Matematika, No 6, June 71, Abstract No 6V443, by G. Blokhina)

Translation: A 4-valued logic  $P_{l_{\! 4}}$  is examined. A function f of  $P_{l_{\! 4}}$  is called a Scheffer function if its closure relative to the superposition operations coincides with  $P_{l_{\! 4}}$ ; that is, f forms a system that is complete in  $P_{l_{\! 4}}$ . Clearly, the function f is a Scheffer function if and only if it is not contained in a single one of the so-called precomplete classes; that is, the closed set of functions which is distinct from  $P_{l_{\! 4}}$ , but whose union with any function not belonging to it is now a system complete in  $P_{l_{\! 4}}$ . It is also clear that a sysspeaking, be redundant. The work establishes that this actually is the case. Of the entire set of precomplete classes in  $P_{l_{\! 4}}$ , whose number, as we know

- 28 -

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

<u>भारतात संस्थापन मान्य सम्बद्धाः स्थापना स्थापना स्थापना स्थापना स्थापना स्थापना स्थापना स्थापना स्थापना स्थापन</u> भारतात स्थापना स्थापना

USSŘ

KOLESNIKOV, M. A. and SHEYNBERGAS, I. M., Raboty po tekhn. kibernet.--Sbornik, No 3, 1971, pp 50-100

(Referativnyy Zhurnal -- Matematika, Abstract No 10A35, 1965) is 82, a subsystem  $\mathfrak{M}$  of 30 precomplete classes is singled out, and it is shown that the nonmembership of the function in each of these is the criterion of its Scheffer status. It is also stated that any proper subsystem of the system  $\mathfrak{M}$  no longer exhibits this property.

2/2

USSR

UDC 536.722:536.63

SHEYNDLIN, A. Ye., BELEVICH, I. S., KOZHEVNIKOV, I. G.

"Study of the Enthalpy and Heat Capacity of Materials Based on Niobium Carbide at High Temperatures"

Moscow, Teplofizika Vysokikh Temperatur, Vol 11, No 1, Jan-Feb 73, pp 88-92.

Abstract: Results are presented from studies of the enthalpy and heat conductivity of niobium carbide with various relationships of Nb and C. Measurements equations are given for description of the dependence of enthalpy and heat capacity on temperature. The error in measurement of enthalpy is  $\pm 1.5\%$ . The primarily as a result of differences in free-carbon content of the specimens

1/1

USSR

UDC 536.63:536.722

SHEYNDLIN A. YE., BELEVICH, I. S., and KOZHEVNIKOV, I. G., Institute of High Temperatures, Academy of Sciences USSR

"Enthalpy and Specific Heat of Boron Carbide in the 273-26000 K Temperature Range"

Moscow, Teplofizika Vysokikh Temperatur, No 2, 1972, pp 421-423

Abstract: The article describes results of a study of the enthalry and specific heat of boron carbide by the mixing method. The initial composition of the boron carbide samples was 76.4 percent B<sub>comb</sub>., 21.26 percent C<sub>tot</sub>.; 3.32 percent C<sub>free</sub> and 2.29 percent impurities (0.71 percent Ca + 0.39 Mg + 0.28 Si + 0.91 percent R<sub>2</sub>0<sub>3</sub>). An analysis of experimental data shows that boron carbide is characterized by a complex temperature dependence of specific heat and enthalpy. The mean specific heat increases rapidly with a temperature change from room temperature to ~ 1100° K, and its dependence on T in the 1300-1900° K range is close to linear. At T> 2100° K the variation of these properties can be described by an exponent. An additional series of experiments performed to reduce the effect of random measurement expects at

- 84 -

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

išmen vietio eremianio is la linguis žavių ir imajas naras ja iz sienio žaveiras erios ar

USSR

SHEYNDLIN, A. YE., et al., Teplofizika Vysokikh Tempekatur, No 2, 1972, pp 421-

temperatures above 2100° K, where a significant increase in the specific heat of boron carbide is observed, confirmed the character of the temperature dependence of calorific properties.

Experiments were also staged to determine the melting temperature of boron carbide in a furnace with a graphite heater in a pure argon atmosphere. At temperatures above 2650° K it was found that the samples lost mass, and a change of composition took place in the material. Boron carbide melt thrown into a cold calorimeter congealed in the form of spheroles with a snooth surface and a large number of internal pores. Chemical analysis showed that samples heated to 2675° K contain 29.05 percent Ctot. and 66.43 percent B; completely fused drops of a sample,49.61 percent Ctot. and 45.26 percent B. The greater part of the impurities is iron, which apparently appeared during the preparation of samples from this very hard carbide. The melting temperature of boron carbide obtained under these conditions is 2713±20° K. In some experiments where direct contact of a sample with the graphite was permitted,

2/3

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

USSR

SHEYNDLIN, A. YE., et al., Teplofizika Vysokikh Temperatur, No 2, 1972, pp 421-

samples melted at a lower temperature equal to 2620° K. Results of chemical analysis and visual observations indicate that dissociation of the material and evaporation of boron take place in boron carbide samples near the melting point, as a result of which the congealed melt represents an extremely porous mass with a significant boron deficiency as compared to the initial composition.

3/3

- 85 -

1/2 055 UNCLASSIFIED PROCESSING DATE--27NOV70

TITLE--POSSIBILITIES FOR USING GAS TURBINE ASSEMBLIES AND MAGNETOHYDRODYNAMIC GENERATORS IN A NUCLEAR POWER STATION WITH HIGH AUTHOR-(04)-MILLIONSHCHIKOV, M.D., LYULKA, A.M., NEDOSPASOV, A.V.,

SHEYNDLIN, A.YE.

SOURCE--TOPLOFIZ. VYS. TEMP. 1970, 8(2), 379-93

DATE PUBLISHED ---- 70

SUBJECT AREAS--PHYSICS, NUCLEAR SCIENCE AND TECHNOLOGY

TOPIC TAGS--GAS TURBINE, MAGNETOHYDRODYNAMICS, NUCLEAR POWER PLANT, MHD

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3008/0569

STEP NO--UR/0294/70/008/002/0379/0393

CIRC ACCESSION NO--AP0137674

- UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

PROCESSING DATE--27NOV70 UNCLASSIFIED 055 2/2 CIRC ACCESSION NO--APO137674 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THERMODYNAMIC EFFICIENCIES (ECONOMICS) AND REDUCED LEVELS OF THERMAL POLLUTION ATTAINABLE IN HE GAS COULED REACTORS COUPLED TO GAS TURBINES OR MAGNETOHYDRODYNAMIC (MHD) GENERATORS ARE DISCUSSED. GAS TURBINE DESIGNS, THEIR COUPLING TO 1200-MW REACTORS, THEIR OPERATION AT 850, 950, AND 1200DEGREES, AND THEIR EFFICIENCIES OF 46.2-54. SPERCENT ARE COMPARED AND ARE DISCUSSED IN RELATION TO COUNTERFLOW AND CROSS FLOW REGENERATOR CHARACTERISTICS. THE CHARACTERISTICS AND EFFICIENCIES OF CARBIDE FUELED 3000-MW REACTORS COUPLED TO MHD GENERATORS OPERATING ON AR-CS OR HE-CS MIXTS. AT GAS COUTLET TEMPS. OF 1733-1973DEGREESK AND REACTOR PRESSURES OF 5-50 ATM ARE DISCUSSED. AN EFFICIENCY OF 57-9PERCENT WAS CALCO. FOR A 3000-MW MHD COUPLED REACTOR OPERATING AT A GAS DUTLET TEMP. OF 2273DEGREESK AT A HEAT RECOVERY OF 90-3PERCENT: INCREASING THE INLET PRESSURE FROM 30 TO 60 ATM REDUCED CAPITAL INVESTMENTS BY SIMILAR TO 25PERCENT AND THE COST PER KW-HR BY SIMILAR TO 11PERCENT.

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

UCSR

MILLIONSHCHIKOV, M. D., LYUL'KA, A. M., NEDOSPASOV, A. V., SHEYHOLLIN, A. YE.

"Possibilities of Using Gas Turbines and Magnetogas-Dynamic Generators at Atomic-Electric Power Plants with High-Temperature, Gas-Cooled Reactors"

Moscow, Teplofizika Vysokikh Temperatur, Vol 8, No 2, March-April 1970, pp 379-393

Abstract: This article describes an investigation of the possibilities of atomicelectric power plants with gas turbines and magnetogas-dynamic generators, using as examples preliminary designs of 1,200-magnetate power units. Although power units of this type will not be built in the near future, selection of them for this study has permitted not only evaluation of the technical parameters of the plants but also their basic economic indexes. The article is based on a report plants but also their basic economic indexes. The article is based on a report presented at the meeting of the magnetogas-dynamic generator group under the International Atomic Agency in Paris, January 1970.

The article contains discussions of the thermal circuit and basic elements of atomic-electric power plants with gas-cooled reactors and closed gas turbines, the equipment composition of these plants, design principles for plasms magnetogasthe equipment composition of these plants, the thermal circuit of atomic-dynamic generators for electric power plants, the thermal circuit of atomic-magnetohydrodynamic electric power plants with steam turbine compressor drive, and 1/2

√ USSR

MTILIONSHCHIKOV, M. D., et al., Teplofizika Vysokikh Temperatur, Vol 8, No 2, March-April 1970, pp 379-393

the layout of an atomic-magnetohydrodynamic-electric power plant with a 2,000°C reactor and gas turbine. Economic indexes showing the cost of electric power and specific calculated expenditures of atomic-electric power plants with gas turbines and magnetogas-dynamic generators based on the 1930-1935 price level are tabulated. The tabulated data shows that atomic power plants with gas-cooled reactors have better over-all technical and economic indexes than plants using organic fuel. The specific annual expenditures of the atomic electric power is 2-3 times lower. The specific capital investments in equipment are approximately the same for steam power plants using organic fuel and for atomic-electric power plants with gas turbines at 850°C or for magnetogas-dynamic generators at 1,700°C. It is concluded that even the simplest atomic-electric power plants with gas turbines at temperatures of 850°C cannot be put into operation in less than ten or fifteen years.

2/2

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

USSR

UDC 536.24

ANTONOV, I. N., SHEYNESSON, A. S., BARSKIY, M. L.

"Role of Radiant and Convective Components in the Heat Exchange of Radiometers"

V sb. Prikl. i teor. fizika. Vyp. 3 (Applied and Theoretical Physics. No. 3 -- Collection of Works), Alma-Ata, 1972, pp 257-262 (from RZh-Mekhanika, No 3, Mar 73, Abstract No 3B914)

Translation: Methods, computational results and a comparative evaluation of the radiant, convective, and total coefficients of heat exchange of the surpossible to determine the average heating of the instrument relative to the surrounding medium and to evaluate the role of radiant and convective components in the total balance of heat exchange under various meteorological conditions. Detailed quantitative characteristics are given. Authors' abstract.

1/1

USSR

WC 541.182.644.541.183.7

SHEYNFAYN, R. YU., STAS', O. P., and NEYMARK, I. YE.

"Synthesis and Adsorption Properties of Mixed Adsorbents of the Type Silica gel -- Zeolite"

Leningrad, Zhurnal Frikladnoy Khimii, Vol 45, No 10, Oct 72, pp 2192-2195

Abstract: In studying the adsorption properties of the seolite-silica gel type sorbents in relationship to their composition and methods of preparation, it was established that the mutual effect of both components of the mixture results in a deviation from additive value in the area of capillary vapor condensation. Facroperes are formed when silica gel is brought in contact with reclite. The volume of the macropores increases with increased quantity of the reclite added. A method for the preparation of sixed absorbents with different porous structures was developed based on mixing reclite with merosilo gel. The reclite-silica gel obtained in this manner shows a bidispersive structure.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

UNCLASSIFIED PROCESSING DATE--27NOV70
TITLE--ON THE MECHANISM OF POROUS STRUCTURE FORMATION IN SILICA GELS,
EFFECT OF SILICIC ACID HYDROGEL AGEING IN ORGANIC SOLVENST ON THE
AUTHOR-(03)-SHEYNFAYN, R.YU., STAS, O.P., NEYMARK, I.YE.

COUNTRY OF INFO--USSR

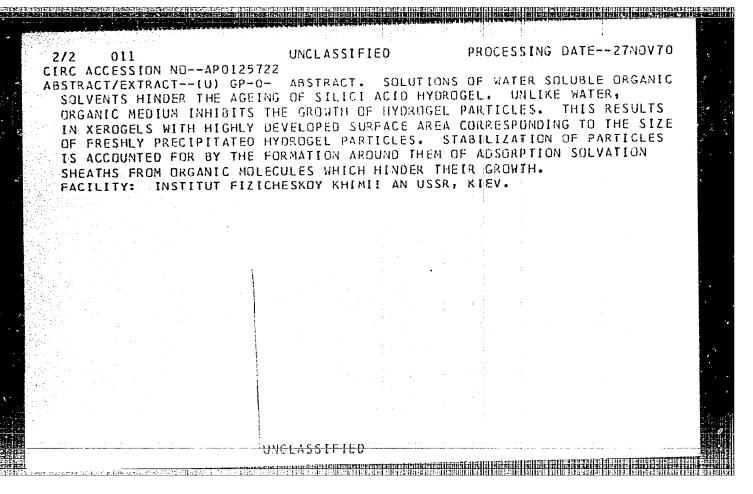
SOURCE--KOLLOIDNYY ZHURNAL, 1970, VOL 32, NR 3, PP 451-453

DATE PUBLISHED ---- 70

SUBJECT AREAS -- CHEMISTRY

TOPIC TAGS--POROSITY, SILICA GEL, ORGANIC SOLVENT, GEL

CONTROL MARKING--NO RESTRICTIONS


DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--2000/2139

STEP NO--UR/0069/70/032/003/0451/0453

CIRC ACCESSION NO--AP0125722

UNCLASATITED ....

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"



Acc. Nr:

AP0036536

Ref. Code: UR 9069

PRIMARY SOURCE:

Kolloidnyy Zhurnal, 1970, Vol 32, Nr 1, PP 104-108

ON THE MECHANISM OF POROUS STRUCTURE FORMATION IN SILICAGEL

CHANGE IN POROUS STRUCTURE OF SILICA GEL UNDER THE ACTION OF HYDROFLUORIC ACID AT THE HYDROGEL AGEING STAGE

Sheynfayn, R. vu.; Neymark, I. Ye.

#### Summary

New possibilities have been found for the porous structure control in silica gels by treating hydrogel with HF. With higher HF concentrations and longer ageing times of hydrogel in it, the pore volume of silica gel increases and its surface area diminishes. A certain similarity has been discovered in the effect of HF and hydroxyl ions concentration on hydrogel ageing, viz. that the porous structure changes in xerogels obtained in

D.n.

USSR

UDC 533.6.013.42

SHEYNIN, I. S., ZABOLOTNAYA, V. A.

"Vibrations of a Vertical Wall in a Compressible Fluid With a Density Variable Over Depth"

V sb. Dinamika gidrotekhn. sooruzh. (Dynamics of Hydraulic Engineering Equipment -- Collection of Works), Moscow, 1972, pp 92-96 (from RZh-Mekhanika, No 3, Mar 73, Abstract No 3V400)

Translation: Small vibrations of a vertical wall located in an ideal compressible nonhomogeneous liquid with a density varying with height are discussed. Wave action on the free surface is not taken into account. The method of separation of variables is used. Graphs are given showing the coefficients of connected mass and the "connected resistance" as functions of frequency under vibrations of a rigid wall. The resulting values of the height are compared with corresponding parameters calculated for a constant value of the density. Ye. A. Vol'mir.

1/1

- 16

#### CIA-RDP86-00513R002202920014-9 "APPROVED FOR RELEASE: 07/20/2001

USSR

UDC: 624.131.531.5

SHEYNIN, V. I. and BIRYUKOV, S. K.

"Load Distribution in Multi-Support Underground Structures where the Supports Have Differing Characteristics"

Moscow, Osnovaniya, fundamenty i mekhanika gruntov, No 3, 1971, pp 22-24

Abstract: The authors solve a problem associated with load distribution on elastic supports which lie between basement rock and ponderable, higher lying elastic rock masses. An instance is considered where the rigidity, width of supports, and the distance between supports can be various. The load applied to the boundaries of the elastic masses is represented in the form of a Fourier transform. The equations for determining loads are found on the basis of geometric conditions and are supplemented by an equilibrium equation. An M-220 electronic computer using a specially prepared program was used to verify the accuracy of the proposed solution. Original article: two tables, one figure, 17 formulas, and six bibliographic entries.

1/1

**APPROVED FOR RELEASE: 07/20/2001** CIA-RDP86-00513R002202920014-9"

ANO 026668

UR 9003

TITLE --

ANNOUNCEMENT OF THE COMMITTEE ON THE LENIN AND STATE

NEWSPAPER ---IZVESTIYA, FEBRUARY 18, 1970, P 3, COLS 1-5

ABSTRACT--THE COMMITTEE ON THE LENIN AND STATE PRIZES HAS ANNOUNCED THE NAMES OF RESEARCHERS ADMITTED TO THE 1970 LENIN PRIZE COMPETITIONS. THE LIST INCLUDES G. V. NOVOZHILOV, YA. A. KUTEPOV, V. I. SMIRNOV, D. V. LESHCHINER, V. M. SHEYNIN, AND A. A. OVCHAROV FOR THEIR "DEVELOPMENT OF THE INTERCONTINENTAL PASSENGER AIRLINER IL-62", AND A. S. YAKOVLEV, YE. G. ADLER, M. G. BENDERSKIY, K. M. VALIK, AND K. S. KIL DISHEVA FOR "JET PASSENGER ATRLINER YAK-40 POWERED BY THREE AI-25 ENGINES".

BOTH CANDIDATES WERE NOMINATED BY THE MINISTRY OF AVIATION INDUSTRY.

19661717

30

CIA-RDP86-00513R002202920014-9" APPROVED FOR RELEASE: 07/20/2001

#### Nitrogen Compounds

USSR

UDC 541.127:547.486.41

RIZAYEV, R. G., SHEYNIN, Yang MEKHIYEV, S. D., and GEYDARLY, N. I.

"Investigation of the Kinetics of Ammonolysis of m-Xylene by a Gradientless Method"

Baku, Azerbaydzhanskiy Khimicheskiy Zhurnal, No 3 (69), 1970, pp 29-32

Abstract: In this paper the authors study the kinetics of ammo-oxidation of m-xylene over a vanadium oxide catalyst (6%  $V_2O_5$  and 2%  $M_0O_2$ ) applied to calcined aluminum oxide in a system with continuous circulation. To determine the fraction of homogeneous reaction, noncatalytic experiments were conducted under conditions similar to the catalytic experiments. More than 90% of the m-xylene was unreacted. Use of the gradientless method made it possible to find the reaction rates in differential form. After the onset of the steady state, the reaction rate was determined from the formula  $\omega = n/G$  At, where n is the number of moles of reacted or formed products in time At, G is the amount of catalyst in grams, and At is the time from the instant of the onset of the steady state in hours. The effect which the concentrations of  $O_2$  and NH<sub>3</sub> have on the bulk conversion of m-xylene, and on the rate of formation of main products and byproducts of the reaction was studied. It was found that 1/2

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

USSR

RIZAYEV, R. G., et al, Azerbaydzhanskiy Khimicheskiy Zhurnal, No 3 (69), 1970, pp 29-32

in the region of partial pressures  $0_2 > P_{0_{2_{\min}}}$  and  $NH_3 > P_{NH_3_{\min}}$  , a zero

kinetic order is observed with respect to  $0_2$  and  $\mathrm{NH}_3$ .

2/2

. 28 ...

VDC 632.95

TALIPOV, Sh. T., DZHIYANBAYEVA, R. Kh., KHALIMOVA, U. Kh., BELOBORODOVA, N. F., SHEYNINA, R. I.

"Analysis of Butyphos in Cotton Seed and Products of Refining Raw Cotton"

Maslo-zhir. prom-st' (0il and Fats Industry), 1972, No 10, pp 33-34 (from RZh-Khimiya, No 2 (II), Feb 73, Abstract No 2N478)

Translation: In order to determine the butyphos residue in raw cotton, fiber, shells and the refined cotton seed oil, extraction by an organic solvent (for cotton seed oil, MeCN and for the other samples, CCl<sub>4</sub>) and purification of the extract in a column filled with Al<sub>2</sub>0<sub>3</sub> with SG KSK [expansion unknown] (3:1) [the sorbent was first treated with HCl (acid)] were carried out. Thin layer chromatography was performed using a fixed layer of SG in the n-hexane-acetone system (4:1). It was developed with a solution of Ac-OH. The sensitivity of the method when analyzing butyphos in raw cotton and fiber is 0.1 mg/kg; in the hulls it is 0.6 mg/kg and in

1/1

-- 43 \_-

SHEYNINA, R. I., DZHIYANBAYEVA, R. Kh., KHALIMOVA, U. Kh., TALIPOV, Sh. T., and IBRAIMOV, Ch. I., Tashkent State University imeni V. 1. Lenin and the Middle Asia Branch of the All-Union Scientific Research Institute of Fats,

"Kinetic Method for Determining Microgram Quantities of the Organophosphorus

Moscow, Zhurnal Analiticheskoy Khimii, Vol 27, Vyp 8, 1972, pp 1643-1647

Abstract: Microgram quantities of butifos can be determined from its catalytic properties on the oxidation of benzidine, o-dimethoxybenzidine, and dimethylbenzidine by H202. The reaction is following photometrically. The dimethylbenzidine reaction is the most sensitive of the indicators as the methyl groups are stronger electron donors than the methoxy group. Conditions optimizing the reaction are examined. Trace amounts of butifos in the fibers and husks of cotton seeds were determined by this method.

1/1

**APPROVED FOR RELEASE: 07/20/2001** CIA-RDP86-00513R002202920014-9"

USSR UDC 632,95

SHEYNIHA, R. I., TALIPOV, SH. T., DZHIYANBAYEVA, R. KH, KHALIMOVA, U. KH.

"Methods of Analyzing Microgram Amounts of Butyphos in Some Products of Industrial Processing of Cotton"

Tr. 2-go Vses. soveshch. po issled. ostatkov pestitsidov i profilakt. zagrvazneniya ini produktov pitaniya, kormov i vnesh. sredv (Morks of the Second AllUnion Conference on the Investigation of Pesticide Residues and Preventive
Contamination of Food Products, Feeds and Environment), Tallin, 1971, pp
376-380 (from RZh-Khimiya, No 12, Jun 72, Abstract No 12N500)

Translation: For analysis of butyphos (I) in raw cotton and cotton fiber, the property of I to accelerate the oxidation of o-dianisidine by  $\rm H_2O_2$  and retard the oxidation of hydroquinone by  $\rm H_2O_2$  in the presence of  $\rm Cu^{2+}$  is used. The concentration of I in the 1.25-6.25  $\cdot$  10-2  $\gamma/m\ell$  range is determined by measuring the rate of one reaction, and the concentration of I to  $10^{-4}$   $\gamma/m\ell$  by measuring the rate of the second reaction. The reaction rate is determined by the fixed time method, measuring the optical density of these solutions 20 minutes after mixing the solutions in the first case and 5 minutes after in the second case.

1/1

- 50 -

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

USSR

UDC 543.544

TALIPOV, SH. T., DZHAYANBAYEVA, R. KH., KHALIMOVA, U. Kh., BELDBORODOVA, N. F., and SHEYNINA, R. I., Tashkent State University imeni V. I. Lenin

"Thin-Layer-Chromatographic Determination of Butyphos in Cottonseed Oil"

Moscow, Khimiya v Sel'skom Khozyaystve, Vol 9, No 4 (90), 1971, p 20

Abstract: KSK silica gel was used for determination of butyphos in cottonseed oil, it is more selective than alumina. Butyphos was extracted from cotton-seed oil with acetonitrile, passed through a 3:1 column of alumina: silica gel and chromatographed in the system n-hexane-acetone (4:1). The spots were developed with 0.05% bromphenol blue; impurities do not show up in this system.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

1/2 010 UNCLASSIFIED PROCESSING DATE--11SEP70
TITLE--REACTION OF N. ACYLISOQUINDLINIUM SALTS WITH PYRROLES -U-

AUTHOR-SHEYNKAAN, A.K., DEYKALO, A.A.

COUNTRY OF INFO--USSR

SOURCE--KHIM. GETEROTSKIKL. SOEDIN. 1970, (1), 126-7

DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY

TORIC TAGS--PYRROLES, HOLECULAR STRUCTURE, THIN LAYER CHROMATOGRAPHY, CHLORINATED ORGANIC COMPOUND, CHEMICAL SYNTHESIS, CRYSTALLIZATION, CHEMICAL SEPERATION

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1987/1049

STEP NO--UR/0409/70/000/001/0126/0127

231118HLB

CIRC ACCESSION NO--APO104447

UNCLASSIFIED

010 UNCLASSIFIED CIRC ACCESSION NO--APO104447 PROCESSING DATE--11SEP70 ABSTRACT/EXTRACT-3(U) GP-0- ABSTRACT. MICROFICHE OF ABSTRACT CONTAINS GRAPHIC INFORMATION. REACTION OF PYRROLES AND ISDQUINGLINE IN THE PRESENCE OF ACYL HALIDES WAS STUDIED AT 25-50DEGREES. PRODUCTS I AND II (3:4 RATIO) PREPD. IN 50-70PERCENT YIELD WERE SEPD. BY FRACTIONAL CRYSTN. FROM ET SUB2 O OR BY PREPARATIVE THIN LAYER CHROMATOG. ON AL SUB2 0 SUB3 (C SUB6 H SUB6-C SUB6 4 SUB14-CHCL SUB3, 6:1:30). THUS WERE PREPD. I (R PRIMEL, R PRIMEZ, PERCENT YIELD, M.P., LAMBOA MAX., AND LOG EPSILON, GIVEN): PH, H, , 136-7DEGREES, 235 MMU, 4.85, 265 MMU, 4.83; 2, FURYL, H, ; 125-6 DEGREES, 235 MMU, 4.27, 260 MMU, 4.23, 315 MMU, 4.19; PH, PH, 88, 149-50DEGREES (ETDH), 300 MMU, 4.11. ALSO PREPD. HERE II IR, M.P., LAMBDA MAX., AND LOG EPSILON GIVEN): PH, 197-8DEGREES, 235 MMU, 5.27, 275 MMU, 5.40; 2, FURYL, 170-10EGREES, 235 MMU, 4.49, 265 MMU, 4.55, 315 MMU, 4.50. ALSO PREPD. WERE III (R PRIMES, PERCENT YIELD, AND

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

UNCLASS FROM A CONTROL OF THE PROPERTY OF THE

1/2 020 UNCLASSIFIED PROCESSING DATE--11SEP70
TITLE--STRUCTURE AND TAUTOMERISM OF D.HYDROXYALDEHYDE ANILS STUDIED BY AN
INFRARED SPECTROSCOPIC METHOD -UAUTHOR--MINKIN, V.I., OSIPOV, D.A., SHEYNKER, V.N.

COUNTRY OF INFO--USSR

SOURCE--ZH. FIZ. KHIM. 1970, 44(1), 23-8

DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--IR SPECTRUM, SPECTROSCOPIC ANALYSIS, MOLECULAR STRUCTURE, ALDEHYDE, HYDROXYL GROUP, AMINE DERIVATIVE, IMINE, BENZENE DERIVATIVE, STEREOCHEMISTRY, TAUTOMERISM

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1987/1044

STEP NO--UR/0076/70/044/001/0023/0028

CIRC ACCESSION NO--APOI04442

\_\_\_\_UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

2/2 020 UNCLASSIFIED CIRC ACCESSION NO--APO104442 PROCESSING DATE--115FP70 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. IR SPECTRA OF PHN:CHAR (I) AND PH PRIMEIS N: CHAR WERE MEASURED IN THE SOLID STATE AND IN CCL SUB4, DIOXANE, AND CHCL SUB3 (AR EQUALS PH, 0-HOC SUB6 H SUB4 (II). 3, HYDROXY, 2, NAPHTHYL (III), 2, METHOXY, 1, NAPHTHYL, 2, HYDROXY, 1, NAPHTHYL (IV), 1, HYDROXY, 2, NAPHTHYL (V), AND 2, HYDROXY, 1, ANTHRYL (VI)) (NU[AR) AND NU(C:N) ARE GIVEN IN A TABLE). VALENCE VIBRATION OF THE C:N BOND IS COMPLEX AND GIVES 2 ABSORPTION BANDS. THE RESULTS CONFIRM THE EXISTENCE OF BENZENDIDQUINONDID TAUTOMERISM FOR SOLNS. OF I (AR EQUALS IV, V), AND PROVE THE ENGL IMINE STRUCTURE FOR I. (AR EQUALS II. III) AND KETO AMINE STRUCTURE FOR I (AR EQUALS VI, AND 9, HYDROXY, 10, PHENANTHRYL). UNCLASSIFIED

UDC 616-097+612.071-11/12

STREETH CHINI II TREETH I IN THE SHEIN MARKET I HANDER FOR THE REPORT SHE AND THE SECRETH A

KONSTANTINOVA, I. V., ZAZHIREY, V. D., and SHEYNKER V. Sh., Institute of Medical Biological Problems, Ministry of Health USSR, and Institute of Human Morphology, Academy of Medical Sciences USSR, Moscow

"Investigation of the Effect of Ribonuclease on the Synthesis of Antibodies During Secondary Immunological Response in Vitro and in Vivo"

Moscow, Doklady Akademii Nauk SSSR, Vol 199, No 4, 1971, pp 948-951

Abstract: The study included 480 in vitro tests in which spleen slices obtained from BCE-vaccinated mice and rabbits were incubated with ribonuclease (with protamine sulfate in control tests), H3-uridine and H3-thymidine. In addition, 86 in vivo tests were conducted in which mice vaccinated with Viantigen, BCE (Bacillus Colnbrook England), and diphtheria toxoid were given daily intravenous or intraperitoneal injections of ribonuclease for five days, and then vaccinated for the second time. Subsequent analysis revealed that ribonuclease in small concentrations stimulated antibody synthesis in vitro and in vivo. In the cultures, enhanced synthesis of ribonucleic acids in lymphocytes and proliferation of reticular cells were also observed. In higher contentrations, the enzyme exerted inhibitory effects which were reversed after the excess ribonuclease was washed out. It is believed that

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

THE CONTROL OF THE PARTY OF THE

USSR

KONSTANTINOVA, I. V., et al., Doklady Akademii Nauk SSSR, Vol 199, No 4, 1971, pp 948-951

the mechanism of action of ribonuclease is either direct or associated with degradation of ribonucleic acids in dying cells and the products of this and are reutilized in biosynthesis.

2/2

~ 54 \_

USSR

UDC 547.759.3:543.422.25

DVORYANTSEVA, G. G., U1'YANOVA, T. N., SHEYNKER, Yu. N., and YAKHONTOV, L. N., All-Union Scientific Research Chemico-Pharmaceutical Institute imeni S. Ordzhonikidze, Moscow

"Study by the PMR Method of the Protonation of Derivatives of 5-Azaindole"

Riga, Khimiya Geterotsiklicheskikh Soyedineniy, No 6, Jun 73, pp 767-772

Abstract: The protonation of 5-azaindole (I), 5-azaindoline (II), 1-phenyl-5-azaindole (III), 1-phenyl-5-azaindoline (IV), 1-acetyl-5-azaindoline (V), and 4-aminopyridine (VI) by trifluoroacetic acid in solutions with various dielectric constants was studied by the PMR method. Protonation took place at 5-N in the pyridine ring. Spin-spin interaction with 1-N - H was indicated by the PMR spectrum of the monocation of VI. In the monocations of I, II, III, and IV there was a considerable contribution of a quinoid structure with a transfer of the positive charge to N of the pyrrole ring. On the basis of the relations between the chemical shifts of protons of III and IV and the concentration of trifluoroacetic acid in methylene chloride, acetonitrile, and deuteracetone, a mechanism of protodonor to the acceptor in solvents with a low polarity takes place over an initially formed base-acid complex to which hydrogen is bound.

- 15 -

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

USSR

UDC 547.834.4+541.634

MIKHLINA, YE. YE., YANINA, A. D., ALEKSEYEVA, L. M., TURCHIN, K. F., SHEYMER, YU. N., YAKHONTOV, L. N., DYUK, R. F., RICHARD, A. YA., and KATRITSKIY, A. R., All-Union Scientific Research Pharmaceutical Chemical Institute imeni S. Ordzhonikidze, Moscow and Chemistry Department, University of East Anglia at Norwich, Great Britain

"Reaction of Benzo [b]quinuclidine with Electrophilic Reagents"

Riga, Khimiya Geterotsiklicheskikh Soyedineniy, Academy of Sciences Latvian SSR, No 3, 1971, pp 385-388

Abstract: Electrophilic substitution of benzo [b] quinuclidine (I) was studied: bromination, nitration, and sulfochlorination. These results are closely related to the absence of p-W electron interaction in I. When I is brominated in several different solvents (acetic acid, chloroform) at 0, 20, and 60° (with or without catalysts), only the perbromide of I and a molecular complex of I with bromine were obtained. The absence of the p-W mesomeric effect in I is shown by its pK. In contrast to bromination, nitration and sulfochlorination of I form products of electrophilic substitution. When I is treated with a nitrating formed. When I is treated with chlorosulfonic acid, first at 0° and then at 10°, benzo [b] quinuclidine-sulfonyl chloride is formed.

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

UDC 547.539.131

KONDRATENKO, N. V., SYROVA, G. P., POPOV, V. I., SHFYNKER YU. N., and YAGUPOL'SKIY, L. M., Institute of Organic Chemistry, Academy of Sciences, Ukrainian SSR

"Aryltrihalosilanes and Germanes.  $\sigma$  Constants of Trihalosilyl and -Germyl Groups

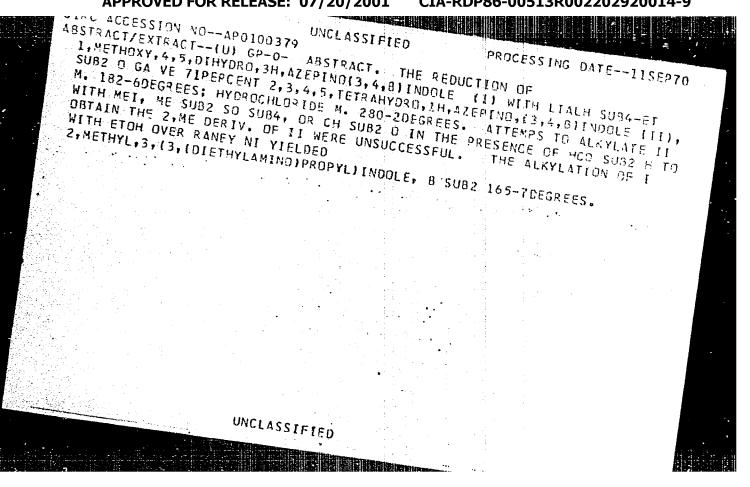
Leningrad, Zhurnal Obshchey Khimii, Sep 71, Vol 41, No 9, pp 2056-2060

Abstract: The synthesis of fluorobenzene derivatives with SiHlg $_3$  and GeHlg $_3$  substituents where Hlg=F, C1 and Br is described and the  $\sigma$  constants of these groups determined. It was found that the induction effect increases in the series of subscituents CHlg $_3$ <SiHlg $_3$ <GeHlg $_3$  with an increase in the electron donor capacity of the central atom to the halide atoms. The SiHlg $_3$  and GeHlg $_3$  hardly differ with respect to the conjugation effect, but they both excel the acceptor effect of the corresponding CHlg $_3$  groups. The regularities in changes in the  $\sigma_c$  constant value are attributed to the participation of silicon and germanium atoms in  $d_\pi$ -P $_\tau$  conjugation. The yields, physical constants and analytical results of the obtained compounds are presented in a table.

- 24 -

ussr

MIKITSKAYA, YE. S., ALEKSEYEVA, L. M., SHEYNKER YILLIAM, and YAKHONTON, L. N., All-Union Scientific Chemical-Pharmaceutical Research Institute imeni S.


"Synthesis of N'-Substituted 4-Aminopiperidines With a Shielded Nitrogen Atom"

Riga, Khimiya Geterotsiklicheskikh Soyedineniy, No 12, Dec 71, pp 1672-1678

Abstract: A detailed study was carried out of the triacetoneamine cyanohydrine (I) reaction with ammonia and various amines. It has been shown that (I) reacts with fatty and aromatic anines in methanol at 0-20° yielding respective 2,2,6,6-tetramethyl-4-cyano-4-amino piperidines (II). Aromatic amines do not react under these conditions. The Chaminonitriles (II) are thermally un-Stable, and when heated above 50°, they split HCN, forming tetramethylpipering tetramethylpipering also specific when these specific when these specific when the specific whe dines. Decyanation of (II) occurs also easily when these compounds are reduced with Lially, yielding pure N'-substituted-2,2,6,6-tetramethyl-4-aminopiperidines (III). Reacted with formic acid and formalin, (III) are easily methylated at the piperidine nitrogen atom. In cases where the exocyclic nitrogen atom happens to be a secondary amine, it also becomes methylated. The products ... N. N. disubstituted 1,2,2,6,6-pentamethyl-4-aminopiperidines are strong bases; they 1/1

# "APPROVED FOR RELEASE: 07/20/2001

CIA-RDP86-00513R002202920014-9 PRUCESSING DATE AZEPINE RING IN 2,3,4,5, TETRAHYDRO, LH, AZEPINO(3,4 BIINDOLE DURING ALKYLATION BY ALCOHOL IN THE PRESENCE OF RANEY NICKEL AUTHOR--GLUSHKOV, R.G., VOLSKOVA, V.A., KOSTYUCHENKO, N.P., SHEYNKER, PROCESSING DATE--11SEP70 COUNTRY OF INFO-USSR SOURCE--KHIM. GETEROTSIKL. SOEDIN. 1970; [2], 277-8 DATE PUBLISHED ---- 70 SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES, CHEMISTRY TOPIC TAGS--NICKEL, CATALYST ACTION, ALKYLATION, INDOLE DERIVATIVE CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1984/1805 CIRC ACCESSION NO--APOIO0379 STEP NO--UR/0409/70/000/002/0277/0273 UNCLASSIFIED 



KOCHERGIN, P. M., SHEYIKER, YU. N., DRUZHININA, A. A., PALEY, P. M. and ALEKSEYEVA, L. M., All Union Scientific Chemical-Pharmaceutical Institute

"Studies in the Imidazole Series. LVIII. Debenzylation of N-Renzyl-substituted H-Pyrrolo [1,2-a]imidazole and 4H-Pyrrolo [1,2-a]benzimidazole"

Riga, Khimiya Geterotsiklicheskikh Soyedineniy, No 6, Jun 71, pp 826-830

Abstract: Debenzylation of N-benzylsubstituted lH-pyrrolo-[1,2-a] imidazole and 4H-pyrrolo [1,2-a]benzimidazole by the action of sodium in liquid ammonia was studied. Using IR and NMR spectral analysis it was shown that the products are derivatives of 7H-pyrrolo-[1,2-a]imidazole and 3H-pyrrolo[1,2-a]benzimidazole. Debenzylation of 2,3-diphenyl-4-benzylpyrrole[1,2-a]benzimidazole takes place with concurrent reduction of the pyrrole ring forming 1H-2,3-dihydro-2,3-

1/1

PERSIANOVA, I. V., and SHEYNKER YU.N., All Union Chemical-Pharmaceutical Scientific Research Institute imeni S. Ordzhonikidze, Moscow

"The Rate of Hydrolytic Splitting of the Ethylenimine Cycles of Diethyleniminophosphorylaminopyrimidines and Their Antiblastic Activity"

Moscow, Khimiko-Farmatsevticheskiy Zhurnal, Vol 4, No 12, Dec 70, pp 33-36

Abstract: The rate of hydrolysis of diethyleniminophosphorylaminopyrimidines was compared to the antitumor activity and toxicity. The hydrolysis was carried out at pH 4.0, 37°C, in physiological solution, using a 5.10-4 mole/1 concentration of the experimental compound. Rat sarcona 45 was used as the model tumor. It was found that in the series of 2-(diethyleniminophorylamino)-pyrimidine a close parallel relationship exists between the rate of hydrolysis, toxicity, and antitumor activity; the later passing a maximum at one point, then going in the opposite direction to hydrolysis. On the other hand, the rate of hydrolysis showed no effect on the activity of the 4-(diethyleniminophosphorylamino)-pyrimidine derivatives. 1/1

37 -

"APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9 ONTAITION THE DESTRICTED DEACTION THE DESTRICTED DEACTION THE AUTHOR-(04)-KHOLODOV, L.YE., SYROVA, G.P., YASHUNSKIY, V.G., SHEYNKER, PROCESSING DATE--160CT70 COUNTRY OF INFO--USSR SOURCE-KHIM. GETEROTSIKL. SOEDIN. 1970, (1), 78-82 DATE PUBLISHED----70 SUBJECT AREAS -- CHEMISTRY, BIOLOGICAL AND MEDICAL SCIENCES TOPIC TAGS--UV SPECTRUM, IR SPECTRUM, NMR SPECTRUM, CHEMICAL SYNTHESIS, CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1983/1171 CIRC ACCESSION NO--AP0054071 STEP NO--UR/0409/70/000/001/0078/0082 UNCLASSIFIED

CIRC ACCESSION NO--APO054071 ABSTRACT/EXTRACT--(U) GP-0-UNCLASSIFIED CYCLOPENTANONE IN A MIXT. OF 400 ML ETOH AND 200 ML 33PERCENT AQ. KOH PROCESSING DATE--160CT70 8.5 HR FOLLOWED BY VACUUM DISTN. OF THE ETOH AND PART OF THE H SUB2 O. ABSTRACT. REFLUX OF 50 G OF ISATIN WITH 85 G DILN. WITH 800 ML H SUB2 D AND EXTN. WITH 300 ML CH SUB2 CLCH SUB2 CL, AFFORDED AN ORG. LAYER WHICH WAS CHARGOAL PURIFIED, DRIED AND VACUUM THE RESULTING OIL WITH PETROLEUM ETHER YIELDED 8.5 G ALPHA, ALPHA PRIME DICYCLOPENTYL IDENEC YCLOPENTHANONE, M. 78-80DEGREES STEP, WAS TREATED WITH ACTIVATED C. ADJUSTED TO PH 6 WITH GLACIAL HOAC AND COOLED. THE PPT. AFTER H SUB2 O HASHING WAS EXTD. WITH ME SUB2 CO (5 TIMES 100 ML), EVAP. TO DRYNESS TO YIELD 16 G OF THE 3,CYCLOPENTYLIDENE, BETA, QUININDANE, O, CARBOXYLIC ACID, MONOHYDRATE (II), M. 113-150EGREES (DECOMPN.) (60PERCENT OF ETOH). SUB2 D SUB5 (75DEGREES, 15 MM) YIELDED THE ANHYD. ACID (11) M. 198-200DEGREES (DECOMPN.); HYDROCHLORIDE M. 190-2DEGREES (DECOMPN.). TREATMENT OF AN AQ. MECH SOLN. OF I WITH AN EI SUBS O SOLN. OF CH SUBS N SUB2 YIELDED THE ME ESTER, M. 135-6DEGREES (MEDH). THE RESIDUE AFTER THE ME SUB2 CO EXTN. IS 45 G (EQUATION SHOWN ON MICROFICH) BETA; QUININDANE, 9, CARBOXYLIC ACID (III); M. 280-2DEGREES (DECOMPN.); HYDROCHLORIDE M. 240DEGREES (DECOMPN.) (ETOH). A SOLN. OF 1.50 G I IN 30 ML GLACIAL HOAC WAS HYDROGENATED OVER 0.15 G OF PO-C AT ATM. PRESSURE 5 HR AT 45-500EGREES. AFTER CATALYST REMOVAL AND DILM. WITH H SUB2 O. THE RESULTING PPT. WAS EXTD. WITH ET SUBS O. THE ET SUBS O. SOLN. H UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

CIRC ACCESSION NO--AP0054071 UNCLASSIFIED ABSTRACT/EXTRACT--THE RESIDUE WAS MIXED WITH WATER FILTERED TO VIELD 0.8 G PROCESSING DATE--160CTTO 3.CYCLOPENTYL, BETA, QUININDANE, 9CARBOXYLIC ACID (IV), M. 240DEGREES (DECOMPN.) (ETDH). A MIXT. OF 5 G II, 1.7 G ANHYD. NADAC AND 30 ML GLACIAL HOAC WAS TREATED OVER I HR AT 10DEGREES WITH 1.4 G BR IN 5 ML GLACIAL HOAC AND STIRRED I HR AT ROOM TEMP. AND THE PPT. FILTERED AND WASHED WITH H SUB2 O AND ME SUB2 CO TO GIVE 5.1 G 3. BROMO, 3, (1, BROMOCYCLOPENTYL), BETA, QUININDANE, 9, CARBOXYLIC ACID (V), M. 115-18DEGREES (DECOMPN.), AFTER PPTN. FROM ME SUB2 NCHO SOLN. BY ADDN. NAUCH:-ISSLED. KHIM.-FARM. INST. IM. URDZHONIKIDZE: MUSCOW USSR. FACILITY: VSES, UNCLASSIFIED 

USSR

шс 541.62:547.785.5'789.61'854.4:543.422. 25.4

ALEKSEYEVA, L. M., PERESLENT, YE. M., SHEYNKER, YU. N., KOCHERGIN, P. M., KRASOVSKIY, A. N., and KURMAZ, B. V., All Union Scientific Chemical-Pharmaceutical Research Institute imeni S. Ordzhonikidze, Moscow

"Ring-Chain Tautomerism of S-Acylalkyl Substituted Imidazoles and Annelated Imidazole Systems"

Riga, Khimiya Geterotsiklicheskikh Soyedineniy, No 8, Aug 72, pp 1125-1131

Abstract: The ring-chain tautomerism of S-acylalkyl substituted 2-mercapto-4,5-diphenylimidazole, 2-mercaptobenzinidazole, 2-mercaptonapht/1,2-d/imidazole, 8-mercaptopurine, 8-mercaptotheophyline, and 2-mercaptoimidazoline has been studied by PMR and IR spectroscopy. Depending on the structure of aldehyde or ketone radical, or on the type of heterocycle condensed with the imidazole nucleus, depending on the state of the aggregate and on the type of solvent used, these compounds can exist as open heterylmercaptoaldehydes (ketones), as cyclic 3-hydroxy derivatives of imidazothianoline systems or as mixed tautomeric forms. When a substituent exists on position 2 of the thiazoline ring, the cyclic compounds exist as a mixture of two disstereoisomeric forms,

- 40 -

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

UDC 543.422.25:546.740'785.5

2

ALEKSEYEVA, L. M., DVORYANTSEVA, G. G., PERSIANOVA, I. V., SHEYNKER, YU. N., PALEY, R. M., and KOCHERGIN, P. M., all Union Scientific Chemical-Pharmacutical Research Institute imeni S. Ordzhonikidze, Moscow

"Protonization of the Derivatives of Pyrrolo 1,2-a benzinidazole"

Riga, Khimiya Geterotsiklicheskikh Soyedineniy, No 8, Aug 72, pp 1132-1137

Abstract: Protonization of a series of pyrrolo/1,2-a/benzimidazole derivatives in trifluoroacetic acid has been studied by PMR method. The 1,3-unsubstituted compounds protonize exclusively on the C<sub>1</sub> atom. Pyrrolobenzimidazoles with a methyl substituent on position 1 form a mixture of two protonized forms under identical conditions, corresponding to the addition of a proton to C<sub>1</sub> and C<sub>3</sub> respectively. Relative content of the C<sub>3</sub> protonized form decreases gradually from 81% to 18% going from a compound unsubstituted in position 3 pyrrolobenzimidazoles decrease symbatically with the increase of the relative pyrrolo/1,2-a/imidazole and pyrrolo/1,2-a/benzimidazole has been calculated 1/1

UDC 547.834.4:543.51

YERMAKOV, A. I., SHEYNKER, Yu. N., MIKHLINA, YE. YE., YANINA, A. D., YAKHONTOV, L. N., and KOSTYANOVSKIY, R. G., All-Union Scientific Research Chemico-Pharmaceutical Institute imeni S. Ordzhonikidze, Moscow

"Mass Spectra of Some 3-Substituted Benzo/b/quinuclidines. III"

Riga, Khimiya Geterotsiklicheskikh Soyedineniy, No 6, Jun 72, pp 825-832

Abstract: The mass spectra of 3-methoxycarbonyl-, 3-ethoxycarbonyl-, 3-(2-dimethylaminoethoxy)carbonyl-, 3-amino-, 3-hydroxymethyl-, 3-chloro-3-methoxy-carbonyl-, 3-chloro-3-ethoxycarbonyl-, and 3-chloro-3-cyanobenzo-/b/quinuclidine were studied. The results indicated that fragmentation of these compounds by electron impact took place over the formation of an open molecular ion that generally resulted upon cleavage of the bridge group containing the substituent or substituents. The C-Cl group had the weakest bond in the molecular ions derived from the disubstituted compounds - hence, C<sup>o</sup> readily split off from the Cl-Ch-X group (X=COOR, CN) with the formation of a =CH - X group.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

CERTARENCE DE LOS PERESTERS DE L'ORIGINATE REPRESENTATION DE MONTRAINE DE MONTRAINE

USSR

ZASKO, F. A., and SHEYNKIN, M. Z.

"Welding Technology of Pipes of Steel Kh60"

Moscow, Stroitel'stvo Truboprovodov, No 1, Jan 71, pp 29-30

Abstract: An x-ray analysis of cracks in welded pipelines of steel Kh60, 1016 mm in diam and 12-14 mm wall, revealed that the cracks originated along the fusing line of the root layer of the weld bead and spreaded on the weld netal of the following layers, but did not propagate on the base metal. The use of a described technique in welding Kh60 steel pipes of 1016 mm in diameter eliminates the generation of cracks. Accordingly, the centering of the pipe buttwelds is carried out by means of hydraulic centering devices which secure the pipe edges until completion of the root layer weld, and the pipe edges are preheated up to 100-150°C. An illustrated propane preheater with 12 burners along the pipe perimeter provides a uniform heating.

1/1

- 40 -

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"

UDC 669.715:539.26

KLESHCHEV, G. V., TOLDIN, V. A., SHEYNKMAN, A. I., RASPOPOV, Yu. G., SHUMILOV, D. V., and TROFIMOV, V. G., Chelyabinsk Pedagogical Institute

"X-Ray and Electron-Microscopic Investigation of the Decay of Supersaturated Solid Solution in AlZn Alloys"

Sverdlovsk, Fizika Metallov i Metallovedeniye, Vol 30, No 4, Oct 70, pp

Abstract: A study was made of the decay of the supersaturated solid solution in AlZn alloys with 40, 50, and 60 wt. % zinc using the X-ray and electron-microscopic methods. The process of decay at tempering temperatures above 200 (but below 275°) depends on the rate of quenching of the specimen from the homogenizing temperature to the tempering temperature. Buring clow quenching a metastable of phase develops, while during fast quenching a stable ophase develops. The possible reasons for such a dependence are considered. The role of the effect of foil thickness is

1/1

- 81 -

sus ses vas come con acceptante memor Ses vas vas come con acceptante memor m

PROCESSING DATE--18SEP70 UNCLASSIFIED

TITLE--STRUCTURE OF TITANIUM (IV) HYDROXIDE STUDIED IN RELATION TO

CONDITIONS OF ITS PREPARATION -U-AUTHOR-102)-DOLMATOV, YU.D., SHEYNKMAN, A.I.

COUNTRY OF INFO--USSR

SOURCE--ZH. PRIKL. KHIM. (LENINGRAD) 1970, 43(2), 249-52

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--TITANIUM COMPOUND, HYDROXIDE, CRYSTALLIZATION, CRYSTAL STRUCTURE, HYDROLYSIS, SULFURIC ACID, HYDROCHLORIC ACID

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1987/0848

STEP NO--UR/0080/70/043/002/0249/0252

CIRC ACCESSION NO--APO104284

UNCLASSIFIED

CONTROL OF THE STREET OF THE S PROCESSING DATE--18SEP70 UNCLASSIFIED 2/2 CIRC ACCESSION NO--APO104284 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE X RAY AND THERMOGRAPHIC DATA OF SAMPLES OF TI HYDROXIDES OBTAINED BY ALK. AND THERMAL HYDROLYSIS OF H SUB2 SO SUB4 AND HOL SOLNS. OF TI (IV) ARE PRESENTED. ALK. HYDROLYSIS OF CULD, HCL SOLNS. OF TI (IV) RESULTS IN THE FORMATION OF AMORPHOUS HYDROXIDES WHICH THEN CRYSTALLIZE INTO A MODIFICATION OF ANATASE AT 397-420DEGREES. AN EXOTHERMAL EFFECT IS OBSERVED UPON CRYSTN. SAMPLES WHICH ARE CALCINED AT 400DEGREES FOR 1 HR HAVE THE STRUCTURE OF ANATASE, WHILE THOSE CALCINES AT 200DEGREES ARE AMORPHOUS. ALK. HYDROLYSIS OF COLD. H SUB2 SO SUB4 SOLNS. OF TI (IV) HAVE THE ANATASE STRUCTURE. THERMAL HYDROLYSIS OF HCL SOLNS. RESULTS IN THE RUTILE STRUCTURE WHILE CORRESPONDING HYDROLYSIS OF H SUB2 SO SUB4 SOLNS. RESULTS IN THE ANATASE STRUCTURE. HMCIASSIFIED....

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202920014-9"